Swarms of Aquatic Unmanned Surface Vehicles (USV), a Review From Simulation to Field Implementation

Jamal Ansary, J. O’Donnell, Nashiyat Fyza, B. Trease
{"title":"Swarms of Aquatic Unmanned Surface Vehicles (USV), a Review From Simulation to Field Implementation","authors":"Jamal Ansary, J. O’Donnell, Nashiyat Fyza, B. Trease","doi":"10.1115/detc2020-22702","DOIUrl":null,"url":null,"abstract":"\n Swarm robotic is a field of multi-robotics in which the robot’s behavior is inspired from nature. With rapid development in the field of the multi-robotics and the lack of efficacy in traditional centralized controls method, decentralized nature inspired swarm algorithms were introduced to control the swarm behavior. Unmanned surface vehicles (USVs) are marine crafts that they can operate autonomously. Due to their potential in operating in different areas, these vehicles have been used for variety of reason including patrolling, border protection, environmental monitoring and oil spill confrontation. This paper provides a review of the Swarm of USVs, their application, simulation environments and the algorithms that has been used in the past and current projects.","PeriodicalId":236538,"journal":{"name":"Volume 2: 16th International Conference on Multibody Systems, Nonlinear Dynamics, and Control (MSNDC)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 2: 16th International Conference on Multibody Systems, Nonlinear Dynamics, and Control (MSNDC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/detc2020-22702","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Swarm robotic is a field of multi-robotics in which the robot’s behavior is inspired from nature. With rapid development in the field of the multi-robotics and the lack of efficacy in traditional centralized controls method, decentralized nature inspired swarm algorithms were introduced to control the swarm behavior. Unmanned surface vehicles (USVs) are marine crafts that they can operate autonomously. Due to their potential in operating in different areas, these vehicles have been used for variety of reason including patrolling, border protection, environmental monitoring and oil spill confrontation. This paper provides a review of the Swarm of USVs, their application, simulation environments and the algorithms that has been used in the past and current projects.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
水下无人水面航行器(USV)群:从仿真到现场实现的综述
蜂群机器人是多机器人技术的一个研究领域,其机器人行为的灵感来源于大自然。随着多机器人领域的迅速发展和传统集中控制方法的有效性不足,引入了分散自然启发的群体算法来控制群体行为。无人水面交通工具(usv)是一种可以自主操作的海上交通工具。由于这些车辆具有在不同地区运行的潜力,它们已被用于各种原因,包括巡逻,边境保护,环境监测和石油泄漏对抗。本文综述了usv群、它们的应用、仿真环境以及在过去和当前项目中使用的算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
DynManto: A Matlab Toolbox for the Simulation and Analysis of Multibody Systems Experimental Study of Mullins Effect in Natural Rubber for Different Stretch Conditions A Non-Prismatic Beam Element for the Optimization of Flexure Mechanisms Towards Data-Driven Modeling of Pathological Tremors Deep Learning of (Periodic) Minimal Coordinates for Multibody Simulations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1