Patryk J. Urban, Edwin J. Klein, L. Xu, Egc Pluk, A. Koonen, G. Khoe, H. Waardt
{"title":"1.25 - 10 Gbit/s Reconfigurable Access Network Architecture","authors":"Patryk J. Urban, Edwin J. Klein, L. Xu, Egc Pluk, A. Koonen, G. Khoe, H. Waardt","doi":"10.1109/ICTON.2007.4296090","DOIUrl":null,"url":null,"abstract":"In this paper we propose a novel reconfigurable access network architecture which enables the bidirectional transmission of 1.25 - 2.5 Gbit/s. Optical network units (ONUs) are equipped with a reflective semiconductor optical amplifier (RSOA) and remote nodes (RNs) are based on microring resonators - both contribute to network transparency and flexibility. We also propose ONU upgrade to serve 10 Gbit/s per end-user. Next to the theoretical description and transmission simulations some principle measurement results are presented which show the feasibility of the concept.","PeriodicalId":265478,"journal":{"name":"2007 9th International Conference on Transparent Optical Networks","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 9th International Conference on Transparent Optical Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTON.2007.4296090","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13
Abstract
In this paper we propose a novel reconfigurable access network architecture which enables the bidirectional transmission of 1.25 - 2.5 Gbit/s. Optical network units (ONUs) are equipped with a reflective semiconductor optical amplifier (RSOA) and remote nodes (RNs) are based on microring resonators - both contribute to network transparency and flexibility. We also propose ONU upgrade to serve 10 Gbit/s per end-user. Next to the theoretical description and transmission simulations some principle measurement results are presented which show the feasibility of the concept.