Regression Method for Noisy Inputs Based on Non-Parametric Estimator Constructed from Noiseless Training Data

Ryo Hanafusa, T. Okadome
{"title":"Regression Method for Noisy Inputs Based on Non-Parametric Estimator Constructed from Noiseless Training Data","authors":"Ryo Hanafusa, T. Okadome","doi":"10.1109/ICCIA.2018.00048","DOIUrl":null,"url":null,"abstract":"The regression method proposed in this paper determines a regression function for noisy inputs. We represent noisy inputs by using noise and latent noise-free constituent of the noisy input. Given an observed noisy input, the proposed method estimates the posterior of the latent noise-free constituent of it, and represents the posterior using the noise distribution. For the value of the regression function for the noisy input, the method produces the expected value of the Nadaraya–Watson estimator for noiseless inputs, which is constructed from a training dataset consisting of noiseless explanatory values and the corresponding objective values. In addition, a probabilistic generative model is presented for estimating the noise distribution. This enables us to determine the noise distribution parametrically from a single noisy input, using the distribution of the noise-free constituent of the noisy input estimated from the training dataset as a prior. Experiments conducted using artificial and real datasets show that the proposed method suppresses the overfitting of the regression function for noisy inputs and that the root mean squared errors of the predictions are smaller compared with those of an existing method.","PeriodicalId":297098,"journal":{"name":"2018 3rd International Conference on Computational Intelligence and Applications (ICCIA)","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 3rd International Conference on Computational Intelligence and Applications (ICCIA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCIA.2018.00048","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The regression method proposed in this paper determines a regression function for noisy inputs. We represent noisy inputs by using noise and latent noise-free constituent of the noisy input. Given an observed noisy input, the proposed method estimates the posterior of the latent noise-free constituent of it, and represents the posterior using the noise distribution. For the value of the regression function for the noisy input, the method produces the expected value of the Nadaraya–Watson estimator for noiseless inputs, which is constructed from a training dataset consisting of noiseless explanatory values and the corresponding objective values. In addition, a probabilistic generative model is presented for estimating the noise distribution. This enables us to determine the noise distribution parametrically from a single noisy input, using the distribution of the noise-free constituent of the noisy input estimated from the training dataset as a prior. Experiments conducted using artificial and real datasets show that the proposed method suppresses the overfitting of the regression function for noisy inputs and that the root mean squared errors of the predictions are smaller compared with those of an existing method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于无噪声训练数据构造的非参数估计的噪声输入回归方法
本文提出的回归方法确定了噪声输入的回归函数。我们通过使用噪声和噪声输入的潜在无噪声成分来表示噪声输入。给定观察到的噪声输入,该方法估计其潜在无噪声成分的后验,并用噪声分布表示后验。对于有噪声输入的回归函数的值,该方法产生无噪声输入的Nadaraya-Watson估计器的期望值,该估计器由由无噪声解释值和相应的客观值组成的训练数据集构建。此外,提出了一种估计噪声分布的概率生成模型。这使我们能够从单个噪声输入参数化地确定噪声分布,使用从训练数据集中估计的噪声输入的无噪声成分的分布作为先验。利用人工数据集和真实数据集进行的实验表明,该方法抑制了回归函数对噪声输入的过拟合,并且预测的均方根误差比现有方法小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Text Extraction and Categorization from Watermark Scientific Document in Bulk Locating Heartbeats from Electrocardiograms and Other Correlated Signals Combining Deep Learning and JSEG Cuda Segmentation Algorithm for Electrical Components Recognition An Oppositional Learning Prediction Operator for Simulated Kalman Filter Clustering Method for Financial Time Series with Co-Movement Relationship
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1