Applying graph-based anomaly detection approaches to the discovery of insider threats

W. Eberle, L. Holder
{"title":"Applying graph-based anomaly detection approaches to the discovery of insider threats","authors":"W. Eberle, L. Holder","doi":"10.1109/ISI.2009.5137304","DOIUrl":null,"url":null,"abstract":"The ability to mine data represented as a graph has become important in several domains for detecting various structural patterns. One important area of data mining is anomaly detection, but little work has been done in terms of detecting anomalies in graph-based data. In this paper we present graph-based approaches to uncovering anomalies in applications containing information representing possible insider threat activity: e-mail, cell-phone calls, and order processing.","PeriodicalId":210911,"journal":{"name":"2009 IEEE International Conference on Intelligence and Security Informatics","volume":"86 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"31","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Conference on Intelligence and Security Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISI.2009.5137304","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 31

Abstract

The ability to mine data represented as a graph has become important in several domains for detecting various structural patterns. One important area of data mining is anomaly detection, but little work has been done in terms of detecting anomalies in graph-based data. In this paper we present graph-based approaches to uncovering anomalies in applications containing information representing possible insider threat activity: e-mail, cell-phone calls, and order processing.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
应用基于图的异常检测方法来发现内部威胁
挖掘以图表示的数据的能力在检测各种结构模式的几个领域中变得非常重要。数据挖掘的一个重要领域是异常检测,但在基于图的数据中检测异常方面做的工作很少。在本文中,我们提出了基于图的方法来发现应用程序中的异常,这些应用程序包含代表可能的内部威胁活动的信息:电子邮件、手机呼叫和订单处理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Social network classification incorporating link type values Weaving ontologies to support digital forensic analysis Building a better password: The role of cognitive load in information security training Web opinions analysis with scalable distance-based clustering A Higher Order Collective Classifier for detecting and classifying network events
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1