Multiframe sure-let denoising of timelapse fluorescence microscopy images

Saskia Delpretti, F. Luisier, S. Ramani, T. Blu, M. Unser
{"title":"Multiframe sure-let denoising of timelapse fluorescence microscopy images","authors":"Saskia Delpretti, F. Luisier, S. Ramani, T. Blu, M. Unser","doi":"10.1109/ISBI.2008.4540954","DOIUrl":null,"url":null,"abstract":"Due to the random nature of photon emission and the various internal noise sources of the detectors, real timelapse fluorescence microscopy images are usually modeled as the sum of a Poisson process plus some Gaussian white noise. In this paper, we propose an adaptation of our SURE-LET denoising strategy to take advantage of the potentially strong similarities between adjacent frames of the observed image sequence. To stabilize the noise variance, we first apply the generalized Anscombe transform using suitable parameters automatically estimated from the observed data. With the proposed algorithm, we show that, in a reasonable computation time, real fluorescence timelapse microscopy images can be denoised with higher quality than conventional algorithms.","PeriodicalId":184204,"journal":{"name":"2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"57","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2008.4540954","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 57

Abstract

Due to the random nature of photon emission and the various internal noise sources of the detectors, real timelapse fluorescence microscopy images are usually modeled as the sum of a Poisson process plus some Gaussian white noise. In this paper, we propose an adaptation of our SURE-LET denoising strategy to take advantage of the potentially strong similarities between adjacent frames of the observed image sequence. To stabilize the noise variance, we first apply the generalized Anscombe transform using suitable parameters automatically estimated from the observed data. With the proposed algorithm, we show that, in a reasonable computation time, real fluorescence timelapse microscopy images can be denoised with higher quality than conventional algorithms.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
延时荧光显微图像的多帧确定性去噪
由于光子发射的随机性和探测器的各种内部噪声源,实时荧光显微镜图像通常被建模为泊松过程加一些高斯白噪声的和。在本文中,我们提出了一种自适应的SURE-LET去噪策略,以利用观察到的图像序列的相邻帧之间潜在的强相似性。为了稳定噪声方差,我们首先使用从观测数据中自动估计的合适参数进行广义Anscombe变换。通过提出的算法,我们表明,在合理的计算时间内,真实荧光延时显微镜图像的去噪质量比传统算法高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
EEG source localization by multi-planar analytic sensing 3D general lesion segmentation in CT Automated grading of breast cancer histopathology using spectral clustering with textural and architectural image features Iterative nonlinear least squares algorithms for direct reconstruction of parametric images from dynamic PET Pathological image segmentation for neuroblastoma using the GPU
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1