{"title":"A Graph-Based Approach to Automatic Convolutional Neural Network Construction for Image Classification","authors":"Gonglin Yuan, Bing Xue, Mengjie Zhang","doi":"10.1109/IVCNZ51579.2020.9290492","DOIUrl":null,"url":null,"abstract":"Convolutional neural networks (CNNs) have achieved great success in the image classification field in recent years. Usually, human experts are needed to design the architectures of CNNs for different tasks. Evolutionary neural network architecture search could find optimal CNN architectures automatically. However, the previous representations of CNN architectures with evolutionary algorithms have many restrictions. In this paper, we propose a new flexible representation based on the directed acyclic graph to encode CNN architectures, to develop a genetic algorithm (GA) based evolutionary neural network architecture, where the depth of candidate CNNs could be variable. Furthermore, we design new crossover and mutation operators, which can be performed on individuals of different lengths. The proposed algorithm is evaluated on five widely used datasets. The experimental results show that the proposed algorithm achieves very competitive performance against its peer competitors in terms of the classification accuracy and number of parameters.","PeriodicalId":164317,"journal":{"name":"2020 35th International Conference on Image and Vision Computing New Zealand (IVCNZ)","volume":"72 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 35th International Conference on Image and Vision Computing New Zealand (IVCNZ)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IVCNZ51579.2020.9290492","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Convolutional neural networks (CNNs) have achieved great success in the image classification field in recent years. Usually, human experts are needed to design the architectures of CNNs for different tasks. Evolutionary neural network architecture search could find optimal CNN architectures automatically. However, the previous representations of CNN architectures with evolutionary algorithms have many restrictions. In this paper, we propose a new flexible representation based on the directed acyclic graph to encode CNN architectures, to develop a genetic algorithm (GA) based evolutionary neural network architecture, where the depth of candidate CNNs could be variable. Furthermore, we design new crossover and mutation operators, which can be performed on individuals of different lengths. The proposed algorithm is evaluated on five widely used datasets. The experimental results show that the proposed algorithm achieves very competitive performance against its peer competitors in terms of the classification accuracy and number of parameters.