An extraction method of liver tumors by using genetic algorithms and neural networks

Eisaku Ohta, Y. Mitsukura, M. Fukumi, N. Akamatsu, M. Yasutomo
{"title":"An extraction method of liver tumors by using genetic algorithms and neural networks","authors":"Eisaku Ohta, Y. Mitsukura, M. Fukumi, N. Akamatsu, M. Yasutomo","doi":"10.1109/ANZIIS.2001.974050","DOIUrl":null,"url":null,"abstract":"Recently, internal human organ disorders that medical image analysis can be used to detect is being actively researched. The research have however, concentrated on the extraction of pulmonary tumors. There is therefore, little research being done on the extraction of liver tumors. This is because there is no difference between concentrated values of a healthy part and one with a tumor in liver CT images. In this paper, the extraction method of such liver tumors is proposed. Furthermore, in order to demonstrate the effectiveness of the proposed scheme, we show a simulation example, using real CT image data.","PeriodicalId":383878,"journal":{"name":"The Seventh Australian and New Zealand Intelligent Information Systems Conference, 2001","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Seventh Australian and New Zealand Intelligent Information Systems Conference, 2001","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ANZIIS.2001.974050","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Recently, internal human organ disorders that medical image analysis can be used to detect is being actively researched. The research have however, concentrated on the extraction of pulmonary tumors. There is therefore, little research being done on the extraction of liver tumors. This is because there is no difference between concentrated values of a healthy part and one with a tumor in liver CT images. In this paper, the extraction method of such liver tumors is proposed. Furthermore, in order to demonstrate the effectiveness of the proposed scheme, we show a simulation example, using real CT image data.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于遗传算法和神经网络的肝脏肿瘤提取方法
近年来,利用医学图像分析检测人体内部器官疾病的研究正在积极进行。然而,研究主要集中在肺肿瘤的提取上。因此,很少有关于肝肿瘤提取的研究。这是因为肝脏CT图像中健康部位和肿瘤部位的集中值没有区别。本文提出了该类肝脏肿瘤的提取方法。此外,为了证明该方法的有效性,我们给出了一个使用真实CT图像数据的仿真示例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Mammogram JPEG quantisation matrix optimisation for PACS Static image simulation of electronic visual prostheses Ultrasound mediated transfection of HT29 colorectal cancer cells in vitro: preliminary results Gait symmetry quantification during treadmill walking Segmentation of clinical structures for radiotherapy treatment planning: a comparison of two morphological approaches
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1