Optimization of Approach Time Waiting at The Port of Tanjung Perak Surabaya using Genetic Algorithm

Nur Hidayah, D. C. R. Novitasari, I. A. Wijaya, M. Faizin, Umi Hanifah, Abdulloh Hamid
{"title":"Optimization of Approach Time Waiting at The Port of Tanjung Perak Surabaya using Genetic Algorithm","authors":"Nur Hidayah, D. C. R. Novitasari, I. A. Wijaya, M. Faizin, Umi Hanifah, Abdulloh Hamid","doi":"10.1109/IAICT55358.2022.9887473","DOIUrl":null,"url":null,"abstract":"Tanjung Perak Port in Surabaya is one of the major ports in Indonesia. The capacity of ships in the Tanjung Perak port of Surabaya is considerable that it often causes queues which cause waiting times. One form of waiting time that is a significant problem in ports is waiting time for approach time. Approach time waiting can delay the performance of a port. Therefore, to improve port performance, it is necessary to optimize the approach time waiting. This study aims to reduce the approach time waiting by optimization method using the Genetic Algorithm (GA). The total approach time waiting from the data obtained at Tanjung Perak Port, Surabaya, for 136 ships in 667.73 hours. By optimizing genetic algorithms, we get less total approach time waiting. The optimization results using GA can optimized the approach time waiting to 461.90 hours. These results indicate a decrease in approach time waiting by 205.83 hours.","PeriodicalId":154027,"journal":{"name":"2022 IEEE International Conference on Industry 4.0, Artificial Intelligence, and Communications Technology (IAICT)","volume":"88 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Industry 4.0, Artificial Intelligence, and Communications Technology (IAICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IAICT55358.2022.9887473","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Tanjung Perak Port in Surabaya is one of the major ports in Indonesia. The capacity of ships in the Tanjung Perak port of Surabaya is considerable that it often causes queues which cause waiting times. One form of waiting time that is a significant problem in ports is waiting time for approach time. Approach time waiting can delay the performance of a port. Therefore, to improve port performance, it is necessary to optimize the approach time waiting. This study aims to reduce the approach time waiting by optimization method using the Genetic Algorithm (GA). The total approach time waiting from the data obtained at Tanjung Perak Port, Surabaya, for 136 ships in 667.73 hours. By optimizing genetic algorithms, we get less total approach time waiting. The optimization results using GA can optimized the approach time waiting to 461.90 hours. These results indicate a decrease in approach time waiting by 205.83 hours.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用遗传算法优化丹绒霹雳泗水港进港等待时间
丹戎霹雳港位于泗水,是印尼的主要港口之一。泗水丹绒霹雳港的船舶容量相当大,经常导致排队,导致等待时间。港口等待时间的一个重要问题是进港等待时间。接近时间等待会影响端口的性能。因此,为了提高港口性能,有必要对进近等待时间进行优化。本研究旨在利用遗传算法(GA)的优化方法来减少接近等待时间。根据在泗水丹戎霹雳港获得的数据,136艘船只在667.73小时内等待进港的总时间。通过优化遗传算法,我们得到更少的总接近等待时间。采用遗传算法的优化结果可以将接近等待时间优化到461.90小时。这些结果表明,等待进近时间减少了205.83小时。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Survey of Machine Learning Approaches for Detecting Depression Using Smartphone Data Design of a Personal Digital Assistant for the Visually Challenged AutoSW: a new automated sliding window-based change point detection method for sensor data DOTA 2 Win Loss Prediction from Item and Hero Data with Machine Learning Hardware Realization of Sigmoid and Hyperbolic Tangent Activation Functions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1