A Muti-Functional Dynamic Neural Processor for Control Applications

D. Rao, M. Gupta
{"title":"A Muti-Functional Dynamic Neural Processor for Control Applications","authors":"D. Rao, M. Gupta","doi":"10.23919/ACC.1993.4793431","DOIUrl":null,"url":null,"abstract":"In this paper we propose a neural network structure called dynamic neural processor (DNP) which comprises of two dynamic neural units coupled as excitatory and inhibitory neurons. This neural model is inspired by the collective computation of subpopulation of biological neurons. It is demonstrated in this paper that the proposed neural architecture can perform various functions, such as learning the inverse kinematics transformation of two- and three-linked robots, and controlling the unknown nonlinear dynamic systems.","PeriodicalId":162700,"journal":{"name":"1993 American Control Conference","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"1993 American Control Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ACC.1993.4793431","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

In this paper we propose a neural network structure called dynamic neural processor (DNP) which comprises of two dynamic neural units coupled as excitatory and inhibitory neurons. This neural model is inspired by the collective computation of subpopulation of biological neurons. It is demonstrated in this paper that the proposed neural architecture can perform various functions, such as learning the inverse kinematics transformation of two- and three-linked robots, and controlling the unknown nonlinear dynamic systems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种用于控制应用的多功能动态神经处理器
本文提出了一种动态神经处理器(DNP)的神经网络结构,它由两个动态神经单元耦合成兴奋神经元和抑制神经元。该神经模型的灵感来自于生物神经元亚群的集体计算。研究表明,所提出的神经网络结构可以实现学习二连杆和三连杆机器人的运动学逆变换、控制未知非线性动态系统等多种功能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Computing Normal External Descriptions and Feedback Design Servo-system design based on LQ and H∞ approaches An Extension of A-A-K Hankel Approximation Theory Using State-Space Formulation Dissipative H2/h∞ controller synthesis Redesign of Robust Controllers for RLFJ Robotic Manipulators Actuated with Harmonic Drives
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1