Causal Structure Learning of Bias for Fair Affect Recognition

Jiaee Cheong, Sinan Kalkan, H. Gunes
{"title":"Causal Structure Learning of Bias for Fair Affect Recognition","authors":"Jiaee Cheong, Sinan Kalkan, H. Gunes","doi":"10.1109/WACVW58289.2023.00038","DOIUrl":null,"url":null,"abstract":"The problem of bias in facial affect recognition tools can lead to severe consequences and issues. It has been posited that causality is able to address the gaps induced by the associational nature of traditional machine learning, and one such gap is that of fairness. However, given the nascency of the field, there is still no clear mapping between tools in causality and applications in fair machine learning for the specific task of affect recognition. To address this gap, we provide the first causal structure formalisation of the different biases that can arise in affect recognition. We conducted a proof of concept on utilising causal structure learning for the post-hoc understanding and analysing bias.","PeriodicalId":306545,"journal":{"name":"2023 IEEE/CVF Winter Conference on Applications of Computer Vision Workshops (WACVW)","volume":"93 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE/CVF Winter Conference on Applications of Computer Vision Workshops (WACVW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WACVW58289.2023.00038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

The problem of bias in facial affect recognition tools can lead to severe consequences and issues. It has been posited that causality is able to address the gaps induced by the associational nature of traditional machine learning, and one such gap is that of fairness. However, given the nascency of the field, there is still no clear mapping between tools in causality and applications in fair machine learning for the specific task of affect recognition. To address this gap, we provide the first causal structure formalisation of the different biases that can arise in affect recognition. We conducted a proof of concept on utilising causal structure learning for the post-hoc understanding and analysing bias.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
公平情感识别偏差的因果结构学习
面部情感识别工具中的偏见问题会导致严重的后果和问题。有人认为,因果关系能够解决由传统机器学习的关联性质引起的差距,其中一个差距就是公平性。然而,鉴于该领域的新生,因果关系中的工具与情感识别这一特定任务的公平机器学习中的应用之间仍然没有明确的映射。为了解决这一差距,我们提供了影响识别中可能出现的不同偏见的第一个因果结构形式化。我们对利用因果结构学习进行事后理解和分析偏差的概念验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Subjective and Objective Video Quality Assessment of High Dynamic Range Sports Content Improving the Detection of Small Oriented Objects in Aerial Images Image Quality Assessment using Semi-Supervised Representation Learning A Principal Component Analysis-Based Approach for Single Morphing Attack Detection Can Machines Learn to Map Creative Videos to Marketing Campaigns?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1