Kevin Stock, Thomas Henretty, Iyyappa Murugandi, P. Sadayappan, R. Harrison
{"title":"Model-Driven SIMD Code Generation for a Multi-resolution Tensor Kernel","authors":"Kevin Stock, Thomas Henretty, Iyyappa Murugandi, P. Sadayappan, R. Harrison","doi":"10.1109/IPDPS.2011.101","DOIUrl":null,"url":null,"abstract":"In this paper, we describe a model-driven compile-time code generator that transforms a class of tensor contraction expressions into highly optimized short-vector SIMD code. We use as a case study a multi-resolution tensor kernel from the MADNESS quantum chemistry application. Performance of a C-based implementation is low, and because the dimensions of the tensors are small, performance using vendor optimized BLAS libraries is also sub optimal. We develop a model-driven code generator that determines the optimal loop permutation and placement of vector load/store, transpose, and splat operations in the generated code, enabling portable performance on short-vector SIMD architectures. Experimental results on an SSE-based platform demonstrate the efficiency of the vector-code synthesizer.","PeriodicalId":355100,"journal":{"name":"2011 IEEE International Parallel & Distributed Processing Symposium","volume":"96 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Parallel & Distributed Processing Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPDPS.2011.101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20
Abstract
In this paper, we describe a model-driven compile-time code generator that transforms a class of tensor contraction expressions into highly optimized short-vector SIMD code. We use as a case study a multi-resolution tensor kernel from the MADNESS quantum chemistry application. Performance of a C-based implementation is low, and because the dimensions of the tensors are small, performance using vendor optimized BLAS libraries is also sub optimal. We develop a model-driven code generator that determines the optimal loop permutation and placement of vector load/store, transpose, and splat operations in the generated code, enabling portable performance on short-vector SIMD architectures. Experimental results on an SSE-based platform demonstrate the efficiency of the vector-code synthesizer.