Error Guarantees for Least Squares Approximation with Noisy Samples in Domain Adaptation

Felix Bartel
{"title":"Error Guarantees for Least Squares Approximation with Noisy Samples in Domain Adaptation","authors":"Felix Bartel","doi":"10.5802/smai-jcm.96","DOIUrl":null,"url":null,"abstract":"Given $n$ samples of a function $f\\colon D\\to\\mathbb C$ in random points drawn with respect to a measure $\\varrho_S$ we develop theoretical analysis of the $L_2(D, \\varrho_T)$-approximation error. For a parituclar choice of $\\varrho_S$ depending on $\\varrho_T$, it is known that the weighted least squares method from finite dimensional function spaces $V_m$, $\\dim(V_m) = m<\\infty$ has the same error as the best approximation in $V_m$ up to a multiplicative constant when given exact samples with logarithmic oversampling. If the source measure $\\varrho_S$ and the target measure $\\varrho_T$ differ we are in the domain adaptation setting, a subfield of transfer learning. We model the resulting deterioration of the error in our bounds. Further, for noisy samples, our bounds describe the bias-variance trade off depending on the dimension $m$ of the approximation space $V_m$. All results hold with high probability. For demonstration, we consider functions defined on the $d$-dimensional cube given in unifom random samples. We analyze polynomials, the half-period cosine, and a bounded orthonormal basis of the non-periodic Sobolev space $H_{\\mathrm{mix}}^2$. Overcoming numerical issues of this $H_{\\text{mix}}^2$ basis, this gives a novel stable approximation method with quadratic error decay. Numerical experiments indicate the applicability of our results.","PeriodicalId":376888,"journal":{"name":"The SMAI journal of computational mathematics","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The SMAI journal of computational mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5802/smai-jcm.96","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Given $n$ samples of a function $f\colon D\to\mathbb C$ in random points drawn with respect to a measure $\varrho_S$ we develop theoretical analysis of the $L_2(D, \varrho_T)$-approximation error. For a parituclar choice of $\varrho_S$ depending on $\varrho_T$, it is known that the weighted least squares method from finite dimensional function spaces $V_m$, $\dim(V_m) = m<\infty$ has the same error as the best approximation in $V_m$ up to a multiplicative constant when given exact samples with logarithmic oversampling. If the source measure $\varrho_S$ and the target measure $\varrho_T$ differ we are in the domain adaptation setting, a subfield of transfer learning. We model the resulting deterioration of the error in our bounds. Further, for noisy samples, our bounds describe the bias-variance trade off depending on the dimension $m$ of the approximation space $V_m$. All results hold with high probability. For demonstration, we consider functions defined on the $d$-dimensional cube given in unifom random samples. We analyze polynomials, the half-period cosine, and a bounded orthonormal basis of the non-periodic Sobolev space $H_{\mathrm{mix}}^2$. Overcoming numerical issues of this $H_{\text{mix}}^2$ basis, this gives a novel stable approximation method with quadratic error decay. Numerical experiments indicate the applicability of our results.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
域自适应中带噪声样本最小二乘逼近的误差保证
给定$n$关于测量$\varrho_S$的函数$f\colon D\to\mathbb C$随机点的样本,我们对$L_2(D, \varrho_T)$ -近似误差进行了理论分析。对于依赖于$\varrho_T$的$\varrho_S$的特定选择,众所周知,有限维函数空间$V_m$, $\dim(V_m) = m<\infty$的加权最小二乘法在给定具有对数过采样的精确样本时具有与$V_m$中的最佳近似值相同的误差,直至相乘常数。如果源测量$\varrho_S$和目标测量$\varrho_T$不同,我们就处于领域适应设置中,这是迁移学习的一个子领域。我们在我们的范围内对误差的恶化进行建模。此外,对于有噪声的样本,我们的边界描述了偏差-方差权衡,这取决于近似空间$V_m$的维度$m$。所有结果都有高概率成立。为了演示,我们考虑在均匀随机样本中给出的$d$ -维立方体上定义的函数。我们分析多项式,半周期余弦,和非周期Sobolev空间$H_{\mathrm{mix}}^2$的有界标准正交基。克服了$H_{\text{mix}}^2$基的数值问题,给出了一种具有二次误差衰减的稳定近似方法。数值实验表明了本文结果的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Hybrid high-order methods for flow simulations in extremely large discrete fracture networks A family of second-order dissipative finite volume schemes for hyperbolic systems of conservation laws Parallel kinetic scheme for transport equations in complex toroidal geometry Initialization of the Circulant Embedding method to speed up the generation of Gaussian random fields Error Guarantees for Least Squares Approximation with Noisy Samples in Domain Adaptation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1