{"title":"Study of the effect of propagation path on lightning-produced electromagnetic pulses based on LLN data","authors":"Xueyun Ding, Ming-li Chen, Ya-ping Du","doi":"10.1109/ICLP.2012.6344310","DOIUrl":null,"url":null,"abstract":"Lightning Location Network (LLN) has been used world-widely to report the peak current of a lightning return stroke based on the assumption that the peak current is proportional to the product of the amplitude of lightning-produced electromagnetic pulse (LEMP) and the source distance. However, this assumption is challenged by the data of rocketed-triggered return strokes. In this study, we propose a statistical approach for identifying the effect of earth path on the LEMP amplitude based on the LLN data. With the data from a Chinese regional LLN, it is found that the product of the LEMP amplitude and the source distance might be quite different at different distances for the same lightning stroke. A coefficient reflecting the effect of propagation path on the LEMP amplitude is defined. It is found that this path effect coefficient varied significantly at different distances and directions to a given sensor. Theoretical explanations for these findings are also explored. The findings are helpful to practically the correction of lightning peak current reported by a LLN, and theoretically the understanding of the rules of electromagnetic pulses propagating over the earth surfaces.","PeriodicalId":400743,"journal":{"name":"2012 International Conference on Lightning Protection (ICLP)","volume":"89 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 International Conference on Lightning Protection (ICLP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICLP.2012.6344310","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Lightning Location Network (LLN) has been used world-widely to report the peak current of a lightning return stroke based on the assumption that the peak current is proportional to the product of the amplitude of lightning-produced electromagnetic pulse (LEMP) and the source distance. However, this assumption is challenged by the data of rocketed-triggered return strokes. In this study, we propose a statistical approach for identifying the effect of earth path on the LEMP amplitude based on the LLN data. With the data from a Chinese regional LLN, it is found that the product of the LEMP amplitude and the source distance might be quite different at different distances for the same lightning stroke. A coefficient reflecting the effect of propagation path on the LEMP amplitude is defined. It is found that this path effect coefficient varied significantly at different distances and directions to a given sensor. Theoretical explanations for these findings are also explored. The findings are helpful to practically the correction of lightning peak current reported by a LLN, and theoretically the understanding of the rules of electromagnetic pulses propagating over the earth surfaces.