A neuro-fuzzy based oil/gas producibility estimation method

H. Malki, J. Baldwin
{"title":"A neuro-fuzzy based oil/gas producibility estimation method","authors":"H. Malki, J. Baldwin","doi":"10.1109/IJCNN.2002.1005593","DOIUrl":null,"url":null,"abstract":"We present a hybrid neuro-fuzzy technique for predicting producibility of a well. First, multilayer neural networks are used to compute petrophysical parameters such as quality control curves and permeability. In particular, neural networks are used to predict the permeability from nuclear magnetic resonance (NMR) logs. Next, the permeability is used as one of the input to a fuzzy logic inference engine that determines producibility and suggests a rank of production for multiple zones in a well. This technique is tested with well logs and results are comparable to expert identification of producible zones. The main advantages of the proposed model are faster processing time and less expert dependency during application.","PeriodicalId":382771,"journal":{"name":"Proceedings of the 2002 International Joint Conference on Neural Networks. IJCNN'02 (Cat. No.02CH37290)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2002 International Joint Conference on Neural Networks. IJCNN'02 (Cat. No.02CH37290)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2002.1005593","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

We present a hybrid neuro-fuzzy technique for predicting producibility of a well. First, multilayer neural networks are used to compute petrophysical parameters such as quality control curves and permeability. In particular, neural networks are used to predict the permeability from nuclear magnetic resonance (NMR) logs. Next, the permeability is used as one of the input to a fuzzy logic inference engine that determines producibility and suggests a rank of production for multiple zones in a well. This technique is tested with well logs and results are comparable to expert identification of producible zones. The main advantages of the proposed model are faster processing time and less expert dependency during application.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种基于神经模糊的油气产能评价方法
提出了一种混合神经-模糊预测方法。首先,利用多层神经网络计算质量控制曲线、渗透率等岩石物性参数;特别地,神经网络被用于预测核磁共振(NMR)测井的渗透率。接下来,渗透率被用作模糊逻辑推理引擎的输入之一,该引擎可以确定产能,并为一口井的多个层提供生产等级。该技术已通过测井进行了测试,其结果与专家确定的可产层相当。该模型的主要优点是处理速度快,在应用过程中较少依赖专家。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
CMAC-based fault diagnosis of power transformers Shape, orientation and size recognition of normal and ambiguous faces by a rotation and size spreading associative neural network Neuronal signal processing in Parkinson's disease Blind signal separation via simultaneous perturbation method Numerical solution of differential equations by radial basis function neural networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1