Bidirectional OM-LSA speech estimator for noise robust speech recognition

Y. Obuchi, Ryu Takeda, M. Togami
{"title":"Bidirectional OM-LSA speech estimator for noise robust speech recognition","authors":"Y. Obuchi, Ryu Takeda, M. Togami","doi":"10.1109/ASRU.2011.6163926","DOIUrl":null,"url":null,"abstract":"A new speech enhancement method using bidirectional speech estimator is introduced. A widely-known speech enhancement method using the optimally-modified log spectral amplitude (OM-LSA) speech estimator is re-modified under the assumption that the frame-synchronous estimation is not essential in some of the speech recognition applications. The new method utilizes two separate flows of the speech gain estimation, one is along the forward direction of time and the other along the backward direction. A simple look-ahead estimation mechanism is also implemented in each flow. By taking the average of these two gains, the speech estimation becomes more robust under various noise conditions. Evaluation experiments using the artificial and real noisy speech data confirm that the speech recognition accuracy can be greatly improved by the proposed method.","PeriodicalId":338241,"journal":{"name":"2011 IEEE Workshop on Automatic Speech Recognition & Understanding","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE Workshop on Automatic Speech Recognition & Understanding","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASRU.2011.6163926","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

A new speech enhancement method using bidirectional speech estimator is introduced. A widely-known speech enhancement method using the optimally-modified log spectral amplitude (OM-LSA) speech estimator is re-modified under the assumption that the frame-synchronous estimation is not essential in some of the speech recognition applications. The new method utilizes two separate flows of the speech gain estimation, one is along the forward direction of time and the other along the backward direction. A simple look-ahead estimation mechanism is also implemented in each flow. By taking the average of these two gains, the speech estimation becomes more robust under various noise conditions. Evaluation experiments using the artificial and real noisy speech data confirm that the speech recognition accuracy can be greatly improved by the proposed method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于噪声鲁棒语音识别的双向OM-LSA语音估计器
介绍了一种新的基于双向语音估计器的语音增强方法。在假设帧同步估计在某些语音识别应用中不需要的情况下,对一种广泛使用的最优修正对数谱幅(OM-LSA)语音估计器的语音增强方法进行了重新改进。该方法利用了两个独立的语音增益估计流程,一个是沿着时间的前向,另一个是沿着时间的后向。在每个流中还实现了一个简单的预检估计机制。通过取这两个增益的平均值,语音估计在各种噪声条件下都具有更强的鲁棒性。利用人工噪声和真实噪声语音数据进行的评价实验表明,该方法可以大大提高语音识别的准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Applying feature bagging for more accurate and robust automated speaking assessment Towards choosing better primes for spoken dialog systems Accent level adjustment in bilingual Thai-English text-to-speech synthesis Fast speaker diarization using a high-level scripting language Evaluating prosodic features for automated scoring of non-native read speech
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1