Gaze Prediction for Recommender Systems

Qian Zhao, Shuo Chang, F. M. Harper, J. Konstan
{"title":"Gaze Prediction for Recommender Systems","authors":"Qian Zhao, Shuo Chang, F. M. Harper, J. Konstan","doi":"10.1145/2959100.2959150","DOIUrl":null,"url":null,"abstract":"As users browse a recommender system, they systematically consider or skip over much of the displayed content. It seems obvious that these eye gaze patterns contain a rich signal concerning these users' preferences. However, because eye tracking data is not available to most recommender systems, these signals are not widely incorporated into personalization models. In this work, we show that it is possible to predict gaze by combining easily-collected user browsing data with eye tracking data from a small number of users in a grid-based recommender interface. Our technique is able to leverage a small amount of eye tracking data to infer gaze patterns for other users. We evaluate our prediction models in MovieLens -- an online movie recommender system. Our results show that incorporating eye tracking data from a small number of users significantly boosts accuracy as compared with only using browsing data, even though the eye-tracked users are different from the testing users (e.g. AUC=0.823 vs. 0.693 in predicting whether a user will fixate on an item). We also demonstrate that Hidden Markov Models (HMMs) can be applied in this setting; they are better than linear models in predicting fixation probability and capturing the interface regularity through Bayesian inference (AUC=0.823 vs. 0.757).","PeriodicalId":315651,"journal":{"name":"Proceedings of the 10th ACM Conference on Recommender Systems","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"61","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 10th ACM Conference on Recommender Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2959100.2959150","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 61

Abstract

As users browse a recommender system, they systematically consider or skip over much of the displayed content. It seems obvious that these eye gaze patterns contain a rich signal concerning these users' preferences. However, because eye tracking data is not available to most recommender systems, these signals are not widely incorporated into personalization models. In this work, we show that it is possible to predict gaze by combining easily-collected user browsing data with eye tracking data from a small number of users in a grid-based recommender interface. Our technique is able to leverage a small amount of eye tracking data to infer gaze patterns for other users. We evaluate our prediction models in MovieLens -- an online movie recommender system. Our results show that incorporating eye tracking data from a small number of users significantly boosts accuracy as compared with only using browsing data, even though the eye-tracked users are different from the testing users (e.g. AUC=0.823 vs. 0.693 in predicting whether a user will fixate on an item). We also demonstrate that Hidden Markov Models (HMMs) can be applied in this setting; they are better than linear models in predicting fixation probability and capturing the interface regularity through Bayesian inference (AUC=0.823 vs. 0.757).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于推荐系统的凝视预测
当用户浏览推荐系统时,他们会系统地考虑或跳过显示的大部分内容。很明显,这些眼睛注视模式包含了与这些用户偏好有关的丰富信号。然而,由于大多数推荐系统无法获得眼动追踪数据,这些信号并没有被广泛地纳入个性化模型。在这项工作中,我们证明了在基于网格的推荐界面中,通过将易于收集的用户浏览数据与来自少数用户的眼动追踪数据相结合,可以预测凝视。我们的技术能够利用少量的眼动追踪数据来推断其他用户的凝视模式。我们在MovieLens(一个在线电影推荐系统)中评估我们的预测模型。我们的研究结果表明,与只使用浏览数据相比,结合来自少数用户的眼动追踪数据显着提高了准确性,即使眼动追踪用户与测试用户不同(例如,预测用户是否会关注某个项目的AUC=0.823 vs. 0.693)。我们还证明了隐马尔可夫模型(hmm)可以应用于这种情况;在预测固着概率和通过贝叶斯推理捕捉界面规律性方面,该模型优于线性模型(AUC=0.823 vs. 0.757)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Opening Remarks Mining Information for the Cold-Item Problem Are You Influenced by Others When Rating?: Improve Rating Prediction by Conformity Modeling Contrasting Offline and Online Results when Evaluating Recommendation Algorithms Intent-Aware Diversification Using a Constrained PLSA
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1