Efficient pavement Distress Detection Based on Attention Fusion and Feature Integration

Andong Xie, Zhi Yu, Xiaochun Cao, Yangyang Wang, Shoujing Yan
{"title":"Efficient pavement Distress Detection Based on Attention Fusion and Feature Integration","authors":"Andong Xie, Zhi Yu, Xiaochun Cao, Yangyang Wang, Shoujing Yan","doi":"10.1109/PHM2022-London52454.2022.00071","DOIUrl":null,"url":null,"abstract":"The images in the pavement distress dataset contain complex backgrounds, which makes manual identification more time consuming. In addition, manual identification requires expert experience and knowledge, which is inefficient and expensive. However, the general distress detection framework based on deep learning loses too much surface feature information, which is essential for crack detection. Therefore, we design an attention module that fuses spatial information and channel information and a feature fusion module that is good at integrating surface feature information. Experiments show that our simple method achieves good performance on the pavement distress dataset.","PeriodicalId":269605,"journal":{"name":"2022 Prognostics and Health Management Conference (PHM-2022 London)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Prognostics and Health Management Conference (PHM-2022 London)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PHM2022-London52454.2022.00071","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The images in the pavement distress dataset contain complex backgrounds, which makes manual identification more time consuming. In addition, manual identification requires expert experience and knowledge, which is inefficient and expensive. However, the general distress detection framework based on deep learning loses too much surface feature information, which is essential for crack detection. Therefore, we design an attention module that fuses spatial information and channel information and a feature fusion module that is good at integrating surface feature information. Experiments show that our simple method achieves good performance on the pavement distress dataset.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于注意力融合和特征融合的路面破损检测方法
路面破损数据集中的图像背景复杂,人工识别耗时较长。此外,人工识别需要专家的经验和知识,效率低,成本高。然而,一般的基于深度学习的损伤检测框架丢失了太多的表面特征信息,而这些特征信息对于裂纹检测至关重要。因此,我们设计了一个融合空间信息和通道信息的关注模块和一个擅长融合地表特征信息的特征融合模块。实验表明,该方法在路面破损数据集上取得了较好的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Defending Against Adversarial Attacks on Time- series with Selective Classification Fault diagnosis of fire control system based on genetic algorithm optimized BP neural network Monitoring and Mitigating Ionosphere threats in GNSS Space Environment Science A Relation Prediction Method for Industrial Knowledge Graph with Complex Relations Condition Monitoring of Wind Turbine Main Bearing Using SCADA Data and Informed by the Principle of Energy Conservation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1