Clustering based spatial spectral preprocessing for hyperspectral unmxing

Xiangfei Shen, Wenxing Bao, Kewen Qu
{"title":"Clustering based spatial spectral preprocessing for hyperspectral unmxing","authors":"Xiangfei Shen, Wenxing Bao, Kewen Qu","doi":"10.1145/3290420.3290475","DOIUrl":null,"url":null,"abstract":"Numerous spectral-based endmember extraction algorithms (EEAs) for hyperspectral unmixing (HU) at the price of ignoring spatial context information in recent years. In this paper, we propose a novel preprocessing module by integrating spatial-spectral information, which consists of three parts: 1) k-means algorithm based on spectral angle distance measurement criterion is used to identify hyperspectral image homogenous regions; 2) the local window is utilized to detect the anomalous pixels that hide in the scene; 3) the reconstruction weight that takes into account spatial and spectral information jointly is designed to revise the anomalous pixels to strengthen image homogeneity. The principal contribution of the proposed algorithm is to promote the homogeneity of image and lessen computational complexity while improving the accuracy of endmember extraction. The experimental results obtained by using real hyperspectral data set show a slight improvement for HU while comparing with the state-of-art spatial preprocessing framework.","PeriodicalId":259201,"journal":{"name":"International Conference on Critical Infrastructure Protection","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Critical Infrastructure Protection","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3290420.3290475","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Numerous spectral-based endmember extraction algorithms (EEAs) for hyperspectral unmixing (HU) at the price of ignoring spatial context information in recent years. In this paper, we propose a novel preprocessing module by integrating spatial-spectral information, which consists of three parts: 1) k-means algorithm based on spectral angle distance measurement criterion is used to identify hyperspectral image homogenous regions; 2) the local window is utilized to detect the anomalous pixels that hide in the scene; 3) the reconstruction weight that takes into account spatial and spectral information jointly is designed to revise the anomalous pixels to strengthen image homogeneity. The principal contribution of the proposed algorithm is to promote the homogeneity of image and lessen computational complexity while improving the accuracy of endmember extraction. The experimental results obtained by using real hyperspectral data set show a slight improvement for HU while comparing with the state-of-art spatial preprocessing framework.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于聚类的高光谱解混空间光谱预处理
近年来,许多基于光谱的端元提取算法(EEAs)用于高光谱解混(HU),但忽略了空间背景信息。本文提出了一种融合空间光谱信息的预处理模块,该模块由三部分组成:1)采用基于光谱角距离测量准则的k-means算法对高光谱图像同质区域进行识别;2)利用局部窗口检测隐藏在场景中的异常像素;3)设计同时考虑空间和光谱信息的重构权值,对异常像元进行修正,增强图像的均匀性。该算法的主要贡献是在提高端元提取精度的同时,提高了图像的均匀性,降低了计算复杂度。使用真实高光谱数据集进行的实验结果表明,与目前最先进的空间预处理框架相比,HU的性能略有提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Deep learning chips: challenges and opportunities for ubiquitous power internet of things Secrecy relaying strategy over correlated fading channels using CSI estimation 3D anisotropie convolutional neural network with step transfer learning for liver segmentation Image feature fusion and its application based on trace transform and improved GLBP An improved AOR-based precoding for massive MIMO systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1