Using Sort-Union to Enhance Economically-Efficient Sentiment Stream Analysis

Prateek Goel, Manajit Chakraborty, C. R. Chowdary
{"title":"Using Sort-Union to Enhance Economically-Efficient Sentiment Stream Analysis","authors":"Prateek Goel, Manajit Chakraborty, C. R. Chowdary","doi":"10.1145/2888451.2888468","DOIUrl":null,"url":null,"abstract":"Sentiment drifts due to people changing their opinions instantly on microblogs e.g. Twitter, are a major challenge in sentiment analysis. In this paper, we have developed a method that selects most frequent messages from a relevant message set constructed using state-of-the-art sampling approaches. Our proposed technique increases the robustness of the classifier against sentiment drifts. Experiments conducted on three publicly available standard Twitter datasets reveal that the modified version performs better in terms of reduction in training resources, error minimization and execution time.","PeriodicalId":136431,"journal":{"name":"Proceedings of the 3rd IKDD Conference on Data Science, 2016","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 3rd IKDD Conference on Data Science, 2016","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2888451.2888468","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Sentiment drifts due to people changing their opinions instantly on microblogs e.g. Twitter, are a major challenge in sentiment analysis. In this paper, we have developed a method that selects most frequent messages from a relevant message set constructed using state-of-the-art sampling approaches. Our proposed technique increases the robustness of the classifier against sentiment drifts. Experiments conducted on three publicly available standard Twitter datasets reveal that the modified version performs better in terms of reduction in training resources, error minimization and execution time.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用排序联合增强经济高效的情感流分析
由于人们在微博(如Twitter)上立即改变自己的观点而导致的情绪漂移是情绪分析中的一个主要挑战。在本文中,我们开发了一种方法,从使用最先进的采样方法构建的相关消息集中选择最频繁的消息。我们提出的技术增加了分类器对情感漂移的鲁棒性。在三个公开可用的标准Twitter数据集上进行的实验表明,修改后的版本在减少训练资源、最小化错误和执行时间方面表现更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
On the Dynamics of Username Changing Behavior on Twitter Smart filters for social retrieval Improving Urban Transportation through Social Media Analytics AMEO 2015: A dataset comprising AMCAT test scores, biodata details and employment outcomes of job seekers Learning from Gurus: Analysis and Modeling of Reopened Questions on Stack Overflow
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1