Estimation of distribution algorithms based on n-gramstatistics for sequencing and optimization

C. Chuang, Stephen F. Smith
{"title":"Estimation of distribution algorithms based on n-gramstatistics for sequencing and optimization","authors":"C. Chuang, Stephen F. Smith","doi":"10.1145/2598394.2598399","DOIUrl":null,"url":null,"abstract":"This paper presents our work on Estimation of Distribution Algorithms (EDAs) that address sequencing problems, i.e., the task of finding the best ordering of a set of items or an optimal schedule to perform a given set of operations. Specifically, we focus on using probabilistic models based on $n$-gram statistics. These models have been used extensively in modeling the statistical properties of sequences. We start with an EDA that uses a bigram model, then extend this scheme to higher-order models. However, directly replacing the bigram model with a higher-order model results in premature convergence. We give an explanation on this situation, along with some empirical support. We then introduce a technique for combining multiple models of different orders, which allows for smooth transition from lower-order models to higher-order ones. Furthermore, this technique can also be used to incorporate other heuristics as well as prior knowledge about the problem into the search process. Promising preliminary results on solving Traveling Salesman Problems (TSPs) are presented.","PeriodicalId":298232,"journal":{"name":"Proceedings of the Companion Publication of the 2014 Annual Conference on Genetic and Evolutionary Computation","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Companion Publication of the 2014 Annual Conference on Genetic and Evolutionary Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2598394.2598399","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents our work on Estimation of Distribution Algorithms (EDAs) that address sequencing problems, i.e., the task of finding the best ordering of a set of items or an optimal schedule to perform a given set of operations. Specifically, we focus on using probabilistic models based on $n$-gram statistics. These models have been used extensively in modeling the statistical properties of sequences. We start with an EDA that uses a bigram model, then extend this scheme to higher-order models. However, directly replacing the bigram model with a higher-order model results in premature convergence. We give an explanation on this situation, along with some empirical support. We then introduce a technique for combining multiple models of different orders, which allows for smooth transition from lower-order models to higher-order ones. Furthermore, this technique can also be used to incorporate other heuristics as well as prior knowledge about the problem into the search process. Promising preliminary results on solving Traveling Salesman Problems (TSPs) are presented.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于n-gramstatistics的排序与优化分布估计算法
本文介绍了我们在解决排序问题的估计分布算法(EDAs)方面的工作,即找到一组项目的最佳排序或执行给定操作集的最佳调度的任务。具体来说,我们专注于使用基于$n$-gram统计的概率模型。这些模型已广泛应用于序列统计特性的建模。我们从使用双元图模型的EDA开始,然后将该方案扩展到高阶模型。然而,直接用高阶模型代替双元模型会导致过早收敛。我们对这种情况进行了解释,并提供了一些经验支持。然后,我们介绍了一种组合不同阶的多个模型的技术,它允许从低阶模型到高阶模型的平滑过渡。此外,该技术还可以用于将其他启发式方法以及有关问题的先验知识合并到搜索过程中。在求解旅行商问题(tsp)方面给出了一些有希望的初步结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Evolutionary synthesis of dynamical systems: the past, current, and future Incremental evolution of HERCL programs for robust control Selecting evolutionary operators using reinforcement learning: initial explorations Flood evolution: changing the evolutionary substrate from a path of stepping stones to a field of rocks Artificial immune systems for optimisation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1