Efficient GPU Implementation for Particle in Cell Algorithm

R. Joseph, Girish Ravunnikutty, S. Ranka, E. D'Azevedo, S. Klasky
{"title":"Efficient GPU Implementation for Particle in Cell Algorithm","authors":"R. Joseph, Girish Ravunnikutty, S. Ranka, E. D'Azevedo, S. Klasky","doi":"10.1109/IPDPS.2011.46","DOIUrl":null,"url":null,"abstract":"Particle in cell (PIC) algorithm is a widely used method in plasma physics to study the trajectories of charged particles under electromagnetic fields. The PIC algorithm is computationally intensive and its time requirements are proportional to the number of charged particles involved in the simulation. The focus of the paper is to parallelize the PIC algorithm on Graphics Processing Unit (GPU). We present several performance trade-offs related to small shared memory and atomic operations on the GPU to achieve high performance.","PeriodicalId":355100,"journal":{"name":"2011 IEEE International Parallel & Distributed Processing Symposium","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Parallel & Distributed Processing Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPDPS.2011.46","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

Particle in cell (PIC) algorithm is a widely used method in plasma physics to study the trajectories of charged particles under electromagnetic fields. The PIC algorithm is computationally intensive and its time requirements are proportional to the number of charged particles involved in the simulation. The focus of the paper is to parallelize the PIC algorithm on Graphics Processing Unit (GPU). We present several performance trade-offs related to small shared memory and atomic operations on the GPU to achieve high performance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高效的GPU实现粒子单元算法
粒子池(PIC)算法是等离子体物理学中广泛应用的一种研究带电粒子在电磁场作用下运动轨迹的方法。PIC算法计算量大,其时间要求与模拟中涉及的带电粒子数量成正比。本文的重点是在图形处理器(GPU)上并行化PIC算法。我们提出了几个与小共享内存和GPU上的原子操作相关的性能权衡,以实现高性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Large-Scale Semantic Concept Detection on Manycore Platforms for Multimedia Mining Two-Stage Tridiagonal Reduction for Dense Symmetric Matrices Using Tile Algorithms on Multicore Architectures A Study of Parallel Particle Tracing for Steady-State and Time-Varying Flow Fields Smith-Waterman Alignment of Huge Sequences with GPU in Linear Space CheCL: Transparent Checkpointing and Process Migration of OpenCL Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1