Failure of Copper Alloy C27000 Innercooler Tubes for Air Compressors Because of Dezincification

{"title":"Failure of Copper Alloy C27000 Innercooler Tubes for Air Compressors Because of Dezincification","authors":"","doi":"10.31399/asm.fach.power.c0046469","DOIUrl":null,"url":null,"abstract":"\n After about 17 years in service, copper alloy C27000 (yellow brass, 65% Cu) innercooler tubes in an air compressor began leaking cooling water, causing failure and requiring replacement. The tubes were 19 mm in diam and had a wall thickness of 1.3 mm (0.050 in.). The cooling water that flowed through the tubes was generally sanitary (chlorinated) well water; however, treated recirculating water was sometimes used. Analysis (visual inspection, 9x and 75x unetched micrographs, and spectrochemical analysis) showed a thick uniform layer of porous, brittle copper on the inner surface of the tube, extending to a depth of about 0.25 mm (0.010 in.) into the metal, plug-type dezincification extending somewhat deeper into the metal. This supported the conclusion that failure of the tubes was the result of the use of an uninhibited brass that has a high zinc content and therefore is readily susceptible to dezincification. Recommendations included replacing the material with copper alloy C68700 (arsenical aluminum brass), which contains 0.02 to 0.06% As and is highly resistant to dezincification. Copper alloy C44300 (inhibited admiralty metal) could be an alternative selection for this application; however, this alloy is not as resistant to impingement attack as copper alloy C68700.","PeriodicalId":107406,"journal":{"name":"ASM Failure Analysis Case Histories: Power Generating Equipment","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASM Failure Analysis Case Histories: Power Generating Equipment","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31399/asm.fach.power.c0046469","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

After about 17 years in service, copper alloy C27000 (yellow brass, 65% Cu) innercooler tubes in an air compressor began leaking cooling water, causing failure and requiring replacement. The tubes were 19 mm in diam and had a wall thickness of 1.3 mm (0.050 in.). The cooling water that flowed through the tubes was generally sanitary (chlorinated) well water; however, treated recirculating water was sometimes used. Analysis (visual inspection, 9x and 75x unetched micrographs, and spectrochemical analysis) showed a thick uniform layer of porous, brittle copper on the inner surface of the tube, extending to a depth of about 0.25 mm (0.010 in.) into the metal, plug-type dezincification extending somewhat deeper into the metal. This supported the conclusion that failure of the tubes was the result of the use of an uninhibited brass that has a high zinc content and therefore is readily susceptible to dezincification. Recommendations included replacing the material with copper alloy C68700 (arsenical aluminum brass), which contains 0.02 to 0.06% As and is highly resistant to dezincification. Copper alloy C44300 (inhibited admiralty metal) could be an alternative selection for this application; however, this alloy is not as resistant to impingement attack as copper alloy C68700.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
空气压缩机C27000铜合金内冷管因脱锌而失效
在使用了大约17年后,空气压缩机中的铜合金C27000(黄黄铜,65% Cu)内冷却器管开始泄漏冷却水,导致故障并需要更换。管直径为19毫米,壁厚为1.3毫米(0.050英寸)。流经管道的冷却水通常是卫生(氯化)井水;然而,有时使用处理过的循环水。分析(目测检查,9倍和75倍未蚀刻的显微照片,以及光谱化学分析)显示,在管的内表面有一层厚而均匀的多孔脆性铜,延伸到金属中约0.25毫米(0.010英寸)的深度,plug-type脱锌延伸到金属中更深一些。这支持了这样的结论:管的失败是由于使用了一种不受抑制的黄铜,这种黄铜含有高锌含量,因此很容易脱锌。建议包括用铜合金C68700(砷铝黄铜)代替材料,其中含有0.02至0.06%的砷,并且高度抗脱锌。铜合金C44300(抑制海军金属)可以作为这种应用的替代选择;然而,这种合金的抗冲击性能不如铜合金C68700。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Investigation of Intergranular Stress Corrosion Cracking in the Fuel Pool at Three Mile Island Unit 1 Intergranular Fatigue Cracking of a Stainless Steel Expansion Joint Another Turbogenerator Failure Turbine Blade Failure Dezincification of Brass Tubes in a Steam Turbine Condenser
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1