The Selection of Optimal Parameters for Machine Learning Methods of Detecting Malicious Requests to Web Applications

Alexandr O. Bolgov, A. Kamenskih
{"title":"The Selection of Optimal Parameters for Machine Learning Methods of Detecting Malicious Requests to Web Applications","authors":"Alexandr O. Bolgov, A. Kamenskih","doi":"10.1109/scm55405.2022.9794881","DOIUrl":null,"url":null,"abstract":"Firewalls are still one of the key technologies for web applications protection from modern cyber threats. The in-depth protection strategy starts with isolation using firewalls and continues with other protection systems, such as intrusion detection systems. The problem with firewalls is false negatives, which can be mitigated with additional filtering tools. The use of machine learning methods is one of the possible directions in the development of defense systems. The article presents the selection of optimal parameters for several classification methods used in machine learning. For this task, a set of training data with common attacks on web applications is used.","PeriodicalId":162457,"journal":{"name":"2022 XXV International Conference on Soft Computing and Measurements (SCM)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 XXV International Conference on Soft Computing and Measurements (SCM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/scm55405.2022.9794881","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Firewalls are still one of the key technologies for web applications protection from modern cyber threats. The in-depth protection strategy starts with isolation using firewalls and continues with other protection systems, such as intrusion detection systems. The problem with firewalls is false negatives, which can be mitigated with additional filtering tools. The use of machine learning methods is one of the possible directions in the development of defense systems. The article presents the selection of optimal parameters for several classification methods used in machine learning. For this task, a set of training data with common attacks on web applications is used.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Web应用程序恶意请求机器学习检测方法的最优参数选择
防火墙仍然是保护web应用程序免受现代网络威胁的关键技术之一。深度保护策略首先使用防火墙进行隔离,然后继续使用其他保护系统(如入侵检测系统)。防火墙的问题是误报,这可以通过额外的过滤工具来缓解。使用机器学习方法是国防系统发展的可能方向之一。本文介绍了几种用于机器学习的分类方法的最佳参数的选择。对于这项任务,使用了一组针对web应用程序的常见攻击的训练数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Development of an Intelligent Speech Analysis System Correlation Discriminator of Images in the Class of Fast Neural Networks On one Approach to the Dynamic Digital Twins Models Synthesis Sociocultural and Information Security Issues in the Implementation of Neural Network Technologies in Chat-bots Design Discretization of a Continuous Frequency Value in a Model of Socially Significant Behavior
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1