Validation of an Advanced Diagnostic Methodology for the Identification and Classification of Gas Turbine Sensor Faults by Means of Field Data

L. Manservigi, M. Venturini, G. Ceschini, G. Bechini, E. Losi
{"title":"Validation of an Advanced Diagnostic Methodology for the Identification and Classification of Gas Turbine Sensor Faults by Means of Field Data","authors":"L. Manservigi, M. Venturini, G. Ceschini, G. Bechini, E. Losi","doi":"10.1115/gt2019-90056","DOIUrl":null,"url":null,"abstract":"\n Sensor fault detection is a crucial aspect for raw data cleaning in gas turbine industry. To this purpose, a comprehensive approach for Improved Detection, Classification and Integrated Diagnostics of Gas Turbine Sensors (named I-DCIDS) was developed by the authors to detect and classify several classes of fault. For single-sensors or redundant/correlated sensors, the I-DCIDS methodology can identify seven classes of fault, i.e. Out of Range, Stuck Signal, Dithering, Standard Deviation, Trend Coherence, Spike and Bias.\n Since the considered faults are detected by means of a methodology which relies on basic mathematical laws and user-defined parameters, sensitivity analyses are carried out in this paper on I-DCIDS parameters to derive some rules of thumbs about their optimal setting. The sensitivity analyses are carried out on four heterogeneous and challenging datasets with redundant sensors installed on Siemens gas turbines.","PeriodicalId":412490,"journal":{"name":"Volume 9: Oil and Gas Applications; Supercritical CO2 Power Cycles; Wind Energy","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 9: Oil and Gas Applications; Supercritical CO2 Power Cycles; Wind Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/gt2019-90056","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Sensor fault detection is a crucial aspect for raw data cleaning in gas turbine industry. To this purpose, a comprehensive approach for Improved Detection, Classification and Integrated Diagnostics of Gas Turbine Sensors (named I-DCIDS) was developed by the authors to detect and classify several classes of fault. For single-sensors or redundant/correlated sensors, the I-DCIDS methodology can identify seven classes of fault, i.e. Out of Range, Stuck Signal, Dithering, Standard Deviation, Trend Coherence, Spike and Bias. Since the considered faults are detected by means of a methodology which relies on basic mathematical laws and user-defined parameters, sensitivity analyses are carried out in this paper on I-DCIDS parameters to derive some rules of thumbs about their optimal setting. The sensitivity analyses are carried out on four heterogeneous and challenging datasets with redundant sensors installed on Siemens gas turbines.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于现场数据的燃气轮机传感器故障识别与分类先进诊断方法的验证
传感器故障检测是燃气轮机工业原始数据清洗的一个重要方面。为此,作者开发了一种改进的燃气轮机传感器检测、分类和综合诊断的综合方法(I-DCIDS),用于检测和分类几类故障。对于单个传感器或冗余/相关传感器,I-DCIDS方法可以识别7类故障,即超出范围、卡信号、抖动、标准偏差、趋势一致性、峰值和偏差。由于所考虑的故障是通过一种依赖于基本数学定律和用户自定义参数的方法来检测的,因此本文对I-DCIDS参数进行了灵敏度分析,以得出其最佳设置的一些经验法则。对安装在西门子燃气轮机上的冗余传感器进行了四个异构和具有挑战性的数据集的敏感性分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Use of Departure Functions to Estimate Deviation of a Real Gas From the Ideal Gas Model Design Considerations for High Pressure Boil-Off Gas (BOG) Centrifugal Compressors With Synchronous Motor Drives in LNG Liquefaction Plants An Overview of Initial Operational Experience With the Closed-Loop sCO2 Test Facility at Cranfield University Wet Gas Compressor Modeling and Performance Scaling The Effect of Blade Deflections on the Torsional Dynamic of a Wind Turbine
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1