A 15-Channel Wireless Neural Recording System Based on Time Division Multiplexing of Pulse Width Modulated Signals

M. Yin, R. Field, Maysam Ghovanloo
{"title":"A 15-Channel Wireless Neural Recording System Based on Time Division Multiplexing of Pulse Width Modulated Signals","authors":"M. Yin, R. Field, Maysam Ghovanloo","doi":"10.1109/MMB.2006.251555","DOIUrl":null,"url":null,"abstract":"This paper describes a 15-channel wireless implantable neural recording (WINeR) system for long-term in vivo experiments. WINeRS consists of an implantable part that contains a system-on-a-chip (SoC) application-specific integrated circuit (ASIC) and an external receiver. The 3 mmtimes3 mm ASIC is fabricated in the MOSIS AMI 0.5-mum 3-poly 3-metal n-well standard CMOS process. The chip contains 15 low-noise amplifier/filters, time division multiplexer (TDM), sample-and-hold (S&H), pulse width modulator (PWM), on-chip clock generator, 32-bit register for control commands, ISM-band VCO transmitter, reference generator, and inductive power management circuitry. The use of PWM technique has lowered power consumption, improved robustness against noise, and reduced complexity by eliminating ADC and its associated circuitry. A commercial FM receiver is used as the external part of the system. The received PWM signal is further demodulated off-line by a MATLAB program. Finally by time division demultiplexing the demodulated samples, the original neural signals are being reconstructed. A custom wideband receiver with real-time PWM/TDM demodulator/demultiplexer is currently under construction","PeriodicalId":170356,"journal":{"name":"2006 International Conference on Microtechnologies in Medicine and Biology","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 International Conference on Microtechnologies in Medicine and Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MMB.2006.251555","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

Abstract

This paper describes a 15-channel wireless implantable neural recording (WINeR) system for long-term in vivo experiments. WINeRS consists of an implantable part that contains a system-on-a-chip (SoC) application-specific integrated circuit (ASIC) and an external receiver. The 3 mmtimes3 mm ASIC is fabricated in the MOSIS AMI 0.5-mum 3-poly 3-metal n-well standard CMOS process. The chip contains 15 low-noise amplifier/filters, time division multiplexer (TDM), sample-and-hold (S&H), pulse width modulator (PWM), on-chip clock generator, 32-bit register for control commands, ISM-band VCO transmitter, reference generator, and inductive power management circuitry. The use of PWM technique has lowered power consumption, improved robustness against noise, and reduced complexity by eliminating ADC and its associated circuitry. A commercial FM receiver is used as the external part of the system. The received PWM signal is further demodulated off-line by a MATLAB program. Finally by time division demultiplexing the demodulated samples, the original neural signals are being reconstructed. A custom wideband receiver with real-time PWM/TDM demodulator/demultiplexer is currently under construction
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于脉宽调制信号时分复用的15路无线神经记录系统
介绍了一种用于长期体内实验的15通道无线植入式神经记录(WINeR)系统。WINeRS由一个可植入的部分组成,其中包含一个系统单片(SoC)专用集成电路(ASIC)和一个外部接收器。3mmtimes3mm ASIC采用MOSIS AMI 0.5-mum 3-poly 3-metal n-well标准CMOS工艺制造。该芯片包含15个低噪声放大器/滤波器、时分多路复用器(TDM)、采样保持器(S&H)、脉宽调制器(PWM)、片上时钟发生器、32位控制命令寄存器、ism波段VCO发射机、参考发生器和感应电源管理电路。PWM技术的使用降低了功耗,提高了抗噪声的鲁棒性,并通过消除ADC及其相关电路降低了复杂性。一个商用调频接收机被用作系统的外部部分。接收到的PWM信号通过MATLAB程序进一步离线解调。最后对解调后的样本进行时分解复用,重建原始神经信号。一种带有实时PWM/TDM解调器/解复用器的定制宽带接收器目前正在建设中
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
PDF Not Yet Available In IEEE Xplore Two-Compartments Microbioreactor with Integrated Magnetic Stirrer Pump for Measurement of Transmembrane Transport of Caco-2 Cells 3D Microelectrodes for Coulometric Screening in Microfabricated Lab-on-a-Chip Devices A Silicon-Based Single-Cell Electroporation Microchip for Gene Transfer Adsorption-induced inactivation of heavy meromyosin on polymer surfaces imposes effective drag force on sliding actin filaments in vitro
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1