{"title":"Optimal Power Train Design of a Hybrid Refuse Collector Vehicle","authors":"T. Knoke, J. Bocker","doi":"10.1109/VPPC.2007.4544237","DOIUrl":null,"url":null,"abstract":"Due to the stop-and-go drive cycle of refuse collector vehicles, hybrid power trains allow significant fuel saving. These power trains are very complex systems because of additional components like an electrical machine, an energy storage, etc. In order to exploit full potential of such systems optimal sizing of the components is essential. The sizing of the components can be seen as an optimization problem with the objectives \"minimize fuel consumption\" and \"minimize vehicle weight\". For the optimization scalable component models are required, which are presented here. The results of the optimization show that additional fuel saving combined with reduced weight is possible with optimally sized components compared to a heuristically designed vehicle.","PeriodicalId":345424,"journal":{"name":"2007 IEEE Vehicle Power and Propulsion Conference","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE Vehicle Power and Propulsion Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VPPC.2007.4544237","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
Due to the stop-and-go drive cycle of refuse collector vehicles, hybrid power trains allow significant fuel saving. These power trains are very complex systems because of additional components like an electrical machine, an energy storage, etc. In order to exploit full potential of such systems optimal sizing of the components is essential. The sizing of the components can be seen as an optimization problem with the objectives "minimize fuel consumption" and "minimize vehicle weight". For the optimization scalable component models are required, which are presented here. The results of the optimization show that additional fuel saving combined with reduced weight is possible with optimally sized components compared to a heuristically designed vehicle.