Efficient and Robust Median-of-Means Algorithms for Location and Regression

Alexander Kogler, Patrick Traxler
{"title":"Efficient and Robust Median-of-Means Algorithms for Location and Regression","authors":"Alexander Kogler, Patrick Traxler","doi":"10.1109/SYNASC.2016.041","DOIUrl":null,"url":null,"abstract":"We consider the computational problem to learn models from data that are possibly contaminated with outliers. We design and analyze algorithms for robust location and robust linear regression. Such algorithms are essential for solving central problems of robust statistics and outlier detection. We show that our algorithms, which are based on a novel extension of the Median-of-Means method by employing the discrete geometric median, are accurate, efficient and robust against many outliers in the data. The discrete geometric median has many desirable characteristics such as it works for general metric spaces and preserves combinatorial and statistical properties. Furthermore, there is an exact and efficient algorithm to compute it, and an even faster approximation algorithm. We present theoretical and experimental results. In particular, we emphasize the generality of Median-of-Means and its ability to speedup and parallelize algorithms which additionally are accurate and robust against many outliers in the data.","PeriodicalId":268635,"journal":{"name":"2016 18th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 18th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SYNASC.2016.041","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

We consider the computational problem to learn models from data that are possibly contaminated with outliers. We design and analyze algorithms for robust location and robust linear regression. Such algorithms are essential for solving central problems of robust statistics and outlier detection. We show that our algorithms, which are based on a novel extension of the Median-of-Means method by employing the discrete geometric median, are accurate, efficient and robust against many outliers in the data. The discrete geometric median has many desirable characteristics such as it works for general metric spaces and preserves combinatorial and statistical properties. Furthermore, there is an exact and efficient algorithm to compute it, and an even faster approximation algorithm. We present theoretical and experimental results. In particular, we emphasize the generality of Median-of-Means and its ability to speedup and parallelize algorithms which additionally are accurate and robust against many outliers in the data.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
定位与回归的高效鲁棒中值算法
我们考虑从可能被异常值污染的数据中学习模型的计算问题。我们设计并分析了鲁棒定位和鲁棒线性回归的算法。这些算法对于解决鲁棒统计和离群值检测的核心问题至关重要。我们的算法基于采用离散几何中位数的中位数方法的新扩展,对数据中的许多异常值具有准确,高效和鲁棒性。离散几何中位数具有许多理想的特性,例如它适用于一般度量空间,并保留了组合和统计性质。此外,有一个精确而有效的算法来计算它,甚至更快的近似算法。我们提出了理论和实验结果。特别地,我们强调了中位数的通用性及其加速和并行化算法的能力,这些算法对数据中的许多异常值具有准确和鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Hybrid CPU/GPU Approach for the Parallel Algebraic Recursive Multilevel Solver pARMS Continuation Semantics of a Language Inspired by Membrane Computing with Symport/Antiport Interactions Parallel Integer Polynomial Multiplication A Numerical Method for Analyzing the Stability of Bi-Parametric Biological Systems Comparing Different Term Weighting Schemas for Topic Modeling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1