Maximum margin planning

Ashesh Jain, Michael Hu, Nathan D. Ratliff, Drew Bagnell, Martin A Zinkevich
{"title":"Maximum margin planning","authors":"Ashesh Jain, Michael Hu, Nathan D. Ratliff, Drew Bagnell, Martin A Zinkevich","doi":"10.1145/1143844.1143936","DOIUrl":null,"url":null,"abstract":"Imitation learning of sequential, goal-directed behavior by standard supervised techniques is often difficult. We frame learning such behaviors as a maximum margin structured prediction problem over a space of policies. In this approach, we learn mappings from features to cost so an optimal policy in an MDP with these cost mimics the expert's behavior. Further, we demonstrate a simple, provably efficient approach to structured maximum margin learning, based on the subgradient method, that leverages existing fast algorithms for inference. Although the technique is general, it is particularly relevant in problems where A* and dynamic programming approaches make learning policies tractable in problems beyond the limitations of a QP formulation. We demonstrate our approach applied to route planning for outdoor mobile robots, where the behavior a designer wishes a planner to execute is often clear, while specifying cost functions that engender this behavior is a much more difficult task.","PeriodicalId":124011,"journal":{"name":"Proceedings of the 23rd international conference on Machine learning","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"681","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 23rd international conference on Machine learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1143844.1143936","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 681

Abstract

Imitation learning of sequential, goal-directed behavior by standard supervised techniques is often difficult. We frame learning such behaviors as a maximum margin structured prediction problem over a space of policies. In this approach, we learn mappings from features to cost so an optimal policy in an MDP with these cost mimics the expert's behavior. Further, we demonstrate a simple, provably efficient approach to structured maximum margin learning, based on the subgradient method, that leverages existing fast algorithms for inference. Although the technique is general, it is particularly relevant in problems where A* and dynamic programming approaches make learning policies tractable in problems beyond the limitations of a QP formulation. We demonstrate our approach applied to route planning for outdoor mobile robots, where the behavior a designer wishes a planner to execute is often clear, while specifying cost functions that engender this behavior is a much more difficult task.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
最大余量规划
通过标准监督技术对顺序的、目标导向的行为进行模仿学习通常是困难的。我们将学习这些行为定义为策略空间上的最大边际结构化预测问题。在这种方法中,我们学习从特征到成本的映射,因此具有这些成本的MDP中的最优策略可以模仿专家的行为。此外,我们展示了一种简单的,可证明有效的结构化最大边际学习方法,基于子梯度方法,利用现有的快速算法进行推理。尽管该技术是通用的,但它特别适用于A*和动态规划方法使学习策略在超出QP公式限制的问题中易于处理的问题。我们展示了我们的方法应用于户外移动机器人的路线规划,其中设计者希望计划者执行的行为通常是明确的,而指定产生这种行为的成本函数是一项更加困难的任务。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
On a theory of learning with similarity functions Bayesian learning of measurement and structural models Predictive search distributions Data association for topic intensity tracking Feature value acquisition in testing: a sequential batch test algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1