An Integrated Process for Verifying Deep Learning Classifiers Using Dataset Dissimilarity Measures

Darryl Hond, H. Asgari, Daniel Jeffery, Mike Newman
{"title":"An Integrated Process for Verifying Deep Learning Classifiers Using Dataset Dissimilarity Measures","authors":"Darryl Hond, H. Asgari, Daniel Jeffery, Mike Newman","doi":"10.4018/ijaiml.289536","DOIUrl":null,"url":null,"abstract":"The specification and verification of algorithms is vital for safety-critical autonomous systems which incorporate deep learning elements. We propose an integrated process for verifying artificial neural network (ANN) classifiers. This process consists of an off-line verification and an on-line performance prediction phase. The process is intended to verify ANN classifier generalisation performance, and to this end makes use of dataset dissimilarity measures. We introduce a novel measure for quantifying the dissimilarity between the dataset used to train a classification algorithm, and the test dataset used to evaluate and verify classifier performance. A system-level requirement could specify the permitted form of the functional relationship between classifier performance and a dissimilarity measure; such a requirement could be verified by dynamic testing. Experimental results, obtained using publicly available datasets, suggest that the measures have relevance to real-world practice for both quantifying dataset dissimilarity, and specifying and verifying classifier performance.","PeriodicalId":217541,"journal":{"name":"Int. J. Artif. Intell. Mach. Learn.","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Artif. Intell. Mach. Learn.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijaiml.289536","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The specification and verification of algorithms is vital for safety-critical autonomous systems which incorporate deep learning elements. We propose an integrated process for verifying artificial neural network (ANN) classifiers. This process consists of an off-line verification and an on-line performance prediction phase. The process is intended to verify ANN classifier generalisation performance, and to this end makes use of dataset dissimilarity measures. We introduce a novel measure for quantifying the dissimilarity between the dataset used to train a classification algorithm, and the test dataset used to evaluate and verify classifier performance. A system-level requirement could specify the permitted form of the functional relationship between classifier performance and a dissimilarity measure; such a requirement could be verified by dynamic testing. Experimental results, obtained using publicly available datasets, suggest that the measures have relevance to real-world practice for both quantifying dataset dissimilarity, and specifying and verifying classifier performance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于数据集不相似性度量的深度学习分类器验证集成过程
算法的规范和验证对于包含深度学习元素的安全关键自主系统至关重要。我们提出了一个集成的过程来验证人工神经网络(ANN)分类器。该过程包括离线验证和在线性能预测阶段。该过程旨在验证ANN分类器的泛化性能,并为此使用数据集不相似性度量。我们引入了一种新的度量来量化用于训练分类算法的数据集与用于评估和验证分类器性能的测试数据集之间的不相似性。系统级需求可以指定分类器性能和不相似性度量之间的功能关系的允许形式;这样的需求可以通过动态测试来验证。使用公开可用的数据集获得的实验结果表明,这些度量在量化数据集不相似性以及指定和验证分类器性能方面与现实世界的实践相关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Analysis and Implications of Adopting AI and Machine Learning in Marketing, Servicing, and Communications Technology Survey of Recent Applications of Artificial Intelligence for Detection and Analysis of COVID-19 and Other Infectious Diseases Boosting Convolutional Neural Networks Using a Bidirectional Fast Gated Recurrent Unit for Text Categorization Using Open-Source Software for Business, Urban, and Other Applications of Deep Neural Networks, Machine Learning, and Data Analytics Tools Autonomous Navigation Using Deep Reinforcement Learning in ROS
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1