Hassen Karray, M. Paulitsch, Bernd Koppenhoefer, D. Geiger
{"title":"Design and implementation of a degraded vision landing aid application on a multicore processor architecture for safety-critical application","authors":"Hassen Karray, M. Paulitsch, Bernd Koppenhoefer, D. Geiger","doi":"10.1109/ISORC.2013.6913229","DOIUrl":null,"url":null,"abstract":"The progress of silicon integration has led to the ability to integrate complex systems on a single die. Integration of different application software components on a distributed system-on-chip can be demanding unless one follows a structural system integration approach with architectural support by hardware. The ACROSS Multi-Processor System-on-Chip platform provides architectural means for integration, such as well-defined communication interfaces, deterministic communication schedules, fault-containment, and error-confinement support. We present the non-functional requirements of a degraded vision landing system for a helicopter and show how the ACROSS Multi-Processor System-on-Chip research platform alleviates integration of software and system components. We also discuss more general multicore-specific software-related requirements and how the ACROSS MPSoC platform meets these.","PeriodicalId":330873,"journal":{"name":"16th IEEE International Symposium on Object/component/service-oriented Real-time distributed Computing (ISORC 2013)","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"16th IEEE International Symposium on Object/component/service-oriented Real-time distributed Computing (ISORC 2013)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISORC.2013.6913229","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
The progress of silicon integration has led to the ability to integrate complex systems on a single die. Integration of different application software components on a distributed system-on-chip can be demanding unless one follows a structural system integration approach with architectural support by hardware. The ACROSS Multi-Processor System-on-Chip platform provides architectural means for integration, such as well-defined communication interfaces, deterministic communication schedules, fault-containment, and error-confinement support. We present the non-functional requirements of a degraded vision landing system for a helicopter and show how the ACROSS Multi-Processor System-on-Chip research platform alleviates integration of software and system components. We also discuss more general multicore-specific software-related requirements and how the ACROSS MPSoC platform meets these.