Undecimated Complex Wavelet Transform based bleeding detection for endoscopic images

K. R. Reeha, K. Shailaja, V. Gopi
{"title":"Undecimated Complex Wavelet Transform based bleeding detection for endoscopic images","authors":"K. R. Reeha, K. Shailaja, V. Gopi","doi":"10.1109/CCIP.2016.7802888","DOIUrl":null,"url":null,"abstract":"Wireless Capsule Endoscopy is a methodology to detect abnormalities in the Gastrointestinal (GI) tract, mostly the internal regions of small intestine. It is a non-invasive process. In this work, Undecimated Double Density Dual Tree Discrete Wavelet Transform (UDDT-DWT) is considered in detecting bleeding WCE images. Four statistical parameters such as contrast, entropy, cluster shade and cluster prominence are calculated from Gray Level Co-occurrence Matrix (GLCM) of each sub images obtained after applying UDDDT-DWT. These features are used for the classification of WCE images. For the detection of blood in images, endoscopic image is converted to HSV colour space and several classifiers are considered. Experiments show that the proposed method provides a high accuracy rate of 99.5%, sensitivity of 99% and specificity of 100% for Random Forest and Random Tree classifier when compared with the existing methods.","PeriodicalId":354589,"journal":{"name":"2016 Second International Conference on Cognitive Computing and Information Processing (CCIP)","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Second International Conference on Cognitive Computing and Information Processing (CCIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCIP.2016.7802888","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Wireless Capsule Endoscopy is a methodology to detect abnormalities in the Gastrointestinal (GI) tract, mostly the internal regions of small intestine. It is a non-invasive process. In this work, Undecimated Double Density Dual Tree Discrete Wavelet Transform (UDDT-DWT) is considered in detecting bleeding WCE images. Four statistical parameters such as contrast, entropy, cluster shade and cluster prominence are calculated from Gray Level Co-occurrence Matrix (GLCM) of each sub images obtained after applying UDDDT-DWT. These features are used for the classification of WCE images. For the detection of blood in images, endoscopic image is converted to HSV colour space and several classifiers are considered. Experiments show that the proposed method provides a high accuracy rate of 99.5%, sensitivity of 99% and specificity of 100% for Random Forest and Random Tree classifier when compared with the existing methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于未消差复小波变换的内镜图像出血检测
无线胶囊内窥镜是一种检测胃肠道异常的方法,主要是小肠内部区域。这是一个非侵入性的过程。在这项工作中,未消去的双密度对偶树离散小波变换(UDDT-DWT)被考虑用于检测出血的WCE图像。利用UDDDT-DWT后得到的每个子图像的灰度共生矩阵(GLCM)计算对比度、熵、聚类阴影和聚类突出等4个统计参数。这些特征用于WCE图像的分类。为了检测图像中的血液,将内窥镜图像转换为HSV色彩空间,并考虑了几种分类器。实验表明,与现有方法相比,该方法对随机森林和随机树分类器的准确率为99.5%,灵敏度为99%,特异性为100%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Hilbert Huang transform based speech recognition An Integrated curvature and Convex Hull based concave point detection in Histopathological images Study of Complex-valued Learning algorithms for Post-surgery survival prediction Optimized Radial Basis Function Neural Network model for wind power prediction Early detection of grapes diseases using machine learning and IoT
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1