Improved American Sign Language Recognition and Correction Using Inception Network, MediaPipe and PyEnchant

D. Agrawal, Harshvardhan Dave, Abhishek P. Shete, Spandana Pulimamidi, Snigdha Bhagat, Punitkumar Bhavsar
{"title":"Improved American Sign Language Recognition and Correction Using Inception Network, MediaPipe and PyEnchant","authors":"D. Agrawal, Harshvardhan Dave, Abhishek P. Shete, Spandana Pulimamidi, Snigdha Bhagat, Punitkumar Bhavsar","doi":"10.1109/PCEMS58491.2023.10136115","DOIUrl":null,"url":null,"abstract":"Sign language recognition through image processing presents challenges related to the requirement of real time applicability and high accuracy. Though previous work adopting methodologies from deep convolutional neural network architectures have shown to achieve good performance, they lack a consummate solution in terms of accuracy due to consideration of word based recognition. Recent development of Inception Network based architectures have shown promising classification accuracy with relatively less computational demand. Hence in this paper we propose a methodology that adopts Inception Network for the task of Sign Language Recognition. We considered the American Sign Language Recognition and Correction model. The correction and suggestion tools are implemented in the model to rectify any incorrect sign detection. The results from our approach achieves accuracy in the order of 99 percent.","PeriodicalId":330870,"journal":{"name":"2023 2nd International Conference on Paradigm Shifts in Communications Embedded Systems, Machine Learning and Signal Processing (PCEMS)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 2nd International Conference on Paradigm Shifts in Communications Embedded Systems, Machine Learning and Signal Processing (PCEMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PCEMS58491.2023.10136115","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Sign language recognition through image processing presents challenges related to the requirement of real time applicability and high accuracy. Though previous work adopting methodologies from deep convolutional neural network architectures have shown to achieve good performance, they lack a consummate solution in terms of accuracy due to consideration of word based recognition. Recent development of Inception Network based architectures have shown promising classification accuracy with relatively less computational demand. Hence in this paper we propose a methodology that adopts Inception Network for the task of Sign Language Recognition. We considered the American Sign Language Recognition and Correction model. The correction and suggestion tools are implemented in the model to rectify any incorrect sign detection. The results from our approach achieves accuracy in the order of 99 percent.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用Inception网络,MediaPipe和PyEnchant改进美国手语识别和纠正
基于图像处理的手语识别技术对实时性和准确性的要求提出了挑战。虽然以前的工作采用深度卷积神经网络架构的方法已经显示出良好的性能,但由于考虑到基于词的识别,它们在准确性方面缺乏完善的解决方案。基于Inception网络的体系结构的最新发展显示出有希望的分类精度和相对较少的计算需求。因此,本文提出了一种采用盗梦网络来完成手语识别任务的方法。我们考虑了美国手语识别和纠正模型。在模型中实现了纠正和建议工具,以纠正任何不正确的符号检测。我们的方法的结果达到了99%的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Interactive Zira Voice Assistant- A Personalized Desktop Application Gait-Face Based Human Recognition From Distant Video Survey on Diverse Image Inpainting using Diffusion Models Survey, Analysis and Association Rules derivation using Apriori Method for buying preference amongst kids of age-group 5 to 9 in India Implementing Chaos Based Optimisations on Neural Networks for Predictions of Distributed Denial-of-Service (DDoS) Attacks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1