Unsupervised speech transcription and alignment based on two complementary ASR systems

Tomás Koctúr, P. Viszlay, J. Staš, M. Lojka, J. Juhár
{"title":"Unsupervised speech transcription and alignment based on two complementary ASR systems","authors":"Tomás Koctúr, P. Viszlay, J. Staš, M. Lojka, J. Juhár","doi":"10.1109/RADIOELEK.2016.7477435","DOIUrl":null,"url":null,"abstract":"An acoustic model is a necessary component of automatic speech recognition system. Acoustic models are trained on a lot of speech recordings with transcriptions. Usually, hundreds of transcribed recordings are required. It is very time and resource consuming process to create manual transcriptions. Acoustic models may be obtained automatically with unsupervised acoustic model training, which uses online speech resources. Obtained speech data are recognized with low resourced automatic speech recognition system. Unsupervised techniques are able to filter out the erroneous hypotheses from the result and the rest use for acoustic model training. Unsupervised methods for generating speech corpora for acoustic model training are presented in this paper.","PeriodicalId":159747,"journal":{"name":"2016 26th International Conference Radioelektronika (RADIOELEKTRONIKA)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 26th International Conference Radioelektronika (RADIOELEKTRONIKA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RADIOELEK.2016.7477435","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

An acoustic model is a necessary component of automatic speech recognition system. Acoustic models are trained on a lot of speech recordings with transcriptions. Usually, hundreds of transcribed recordings are required. It is very time and resource consuming process to create manual transcriptions. Acoustic models may be obtained automatically with unsupervised acoustic model training, which uses online speech resources. Obtained speech data are recognized with low resourced automatic speech recognition system. Unsupervised techniques are able to filter out the erroneous hypotheses from the result and the rest use for acoustic model training. Unsupervised methods for generating speech corpora for acoustic model training are presented in this paper.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于两个互补ASR系统的无监督语音转录和对齐
声学模型是自动语音识别系统的必要组成部分。声学模型是在大量带有转录的语音记录上进行训练的。通常,需要数百个转录记录。创建手动转录是一个非常耗时和消耗资源的过程。利用在线语音资源进行无监督声学模型训练,可以自动获得声学模型。用低资源自动语音识别系统对获取的语音数据进行识别。无监督技术能够从结果中过滤掉错误的假设,其余的用于声学模型训练。提出了一种用于声学模型训练的无监督语音语料库生成方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Angular resolution of an antenna array with two incoming coherent signals Interfering influences on electrical cable between frequency converter and electric motor Design and analysis of new energy efficient glitch free adiabatic logic circuit Ultra Wide Band receiver design CMOS analog circuit optimization via river formation dynamics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1