Application of the Random Forest Kernel in Nonparametric Regression Model with Spherical Variables

Huiqun Gao, Xu Qin
{"title":"Application of the Random Forest Kernel in Nonparametric Regression Model with Spherical Variables","authors":"Huiqun Gao, Xu Qin","doi":"10.1109/ICAA53760.2021.00179","DOIUrl":null,"url":null,"abstract":"In this paper, we apply the random forest kernel to nonparametric regression model with spherical and linear variables. Validate the new model with simulated data and actual airfoil noise data. Comparing with the Gaussian kernel and the linear-circular kernel, the experimental results show that the random forest kernel has stable performance and fast computation speed, and the random forest kernel has a better fitting effect in high dimension.","PeriodicalId":121879,"journal":{"name":"2021 International Conference on Intelligent Computing, Automation and Applications (ICAA)","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Intelligent Computing, Automation and Applications (ICAA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAA53760.2021.00179","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we apply the random forest kernel to nonparametric regression model with spherical and linear variables. Validate the new model with simulated data and actual airfoil noise data. Comparing with the Gaussian kernel and the linear-circular kernel, the experimental results show that the random forest kernel has stable performance and fast computation speed, and the random forest kernel has a better fitting effect in high dimension.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
随机森林核在球变量非参数回归模型中的应用
本文将随机森林核应用于具有球形和线性变量的非参数回归模型。用仿真数据和实际翼型噪声数据验证新模型。实验结果表明,与高斯核和线性圆核相比,随机森林核具有稳定的性能和快速的计算速度,并且在高维上具有更好的拟合效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Discussion on Big Data Network Public Opinion in Colleges and Universities Robot Path Planning Based on Fusion Improved Ant Colony Algorithm Intra-and-inter Sentence Attention Model for Enhanced Question Answering System Mobile Application GUI Similarity Comparison Based on Perceptual Hash for Automated Robot Testing Discuss on Functions and Design of Virtual Travel Communities for Seniors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1