Ensemble CCA for Continuous Emotion Prediction

AVEC '14 Pub Date : 2014-11-07 DOI:10.1145/2661806.2661814
Heysem Kaya, Fazilet Çilli, A. A. Salah
{"title":"Ensemble CCA for Continuous Emotion Prediction","authors":"Heysem Kaya, Fazilet Çilli, A. A. Salah","doi":"10.1145/2661806.2661814","DOIUrl":null,"url":null,"abstract":"This paper presents our work on ACM MM Audio Visual Emotion Corpus 2014 (AVEC 2014) using the baseline features in accordance with the challenge protocol. For prediction, we use Canonical Correlation Analysis (CCA) in affect sub-challenge (ASC) and Moore-Penrose generalized inverse (MPGI) in depression sub-challenge (DSC). The video baseline provides histograms of Local Gabor Binary Patterns from Three Orthogonal Planes (LGBP-TOP) features. Based on our preliminary experiments on AVEC 2013 challenge data, we focus on the inner facial regions that correspond to eyes and mouth area. We obtain an ensemble of regional linear regressors via CCA and MPGI. We also enrich the 2014 baseline set with Local Phase Quantization (LPQ) features extracted using Intraface toolkit detected/tracked faces. Combining both representations in a CCA ensemble approach, on the challenge test set we reach an average Pearson's Correlation Coefficient (PCC) of 0.3932, outperforming the ASC test set baseline PCC of 0.1966. On the DSC, combining modality specific MPGI based ensemble systems, we reach 9.61 Root Mean Square Error (RMSE).","PeriodicalId":318508,"journal":{"name":"AVEC '14","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"66","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AVEC '14","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2661806.2661814","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 66

Abstract

This paper presents our work on ACM MM Audio Visual Emotion Corpus 2014 (AVEC 2014) using the baseline features in accordance with the challenge protocol. For prediction, we use Canonical Correlation Analysis (CCA) in affect sub-challenge (ASC) and Moore-Penrose generalized inverse (MPGI) in depression sub-challenge (DSC). The video baseline provides histograms of Local Gabor Binary Patterns from Three Orthogonal Planes (LGBP-TOP) features. Based on our preliminary experiments on AVEC 2013 challenge data, we focus on the inner facial regions that correspond to eyes and mouth area. We obtain an ensemble of regional linear regressors via CCA and MPGI. We also enrich the 2014 baseline set with Local Phase Quantization (LPQ) features extracted using Intraface toolkit detected/tracked faces. Combining both representations in a CCA ensemble approach, on the challenge test set we reach an average Pearson's Correlation Coefficient (PCC) of 0.3932, outperforming the ASC test set baseline PCC of 0.1966. On the DSC, combining modality specific MPGI based ensemble systems, we reach 9.61 Root Mean Square Error (RMSE).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
持续情绪预测的集成CCA
本文介绍了我们根据挑战协议使用基线特征在ACM MM视听情感语料库2014 (AVEC 2014)上的工作。为了进行预测,我们在情感子挑战(ASC)中使用典型相关分析(CCA),在抑郁子挑战(DSC)中使用Moore-Penrose广义逆(MPGI)。视频基线提供了三个正交平面(LGBP-TOP)特征的局部Gabor二值模式直方图。基于AVEC 2013挑战数据的初步实验,我们重点研究了与眼睛和嘴巴对应的面部内部区域。我们通过CCA和MPGI得到了一个区域线性回归量的集合。我们还利用Intraface工具包检测/跟踪的人脸提取的局部相位量化(LPQ)特征来丰富2014年的基线集。在CCA集成方法中结合两种表示,在挑战测试集上,我们获得了0.3932的平均Pearson相关系数(PCC),优于ASC测试集的基线PCC(0.1966)。在DSC上,结合基于模态的MPGI集成系统,我们得到了9.61的均方根误差(RMSE)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multimodal Prediction of Affective Dimensions and Depression in Human-Computer Interactions Automatic Depression Scale Prediction using Facial Expression Dynamics and Regression Depression Estimation Using Audiovisual Features and Fisher Vector Encoding The SRI AVEC-2014 Evaluation System Emotion Recognition and Depression Diagnosis by Acoustic and Visual Features: A Multimodal Approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1