A Hybrid Neural Network-based Approach for Predicting Course Grades

Desheng Zeng, Guanquan Wu, Shuanglong Pang, Delan Zeng, Xiaodan Chen, Shuai Shao
{"title":"A Hybrid Neural Network-based Approach for Predicting Course Grades","authors":"Desheng Zeng, Guanquan Wu, Shuanglong Pang, Delan Zeng, Xiaodan Chen, Shuai Shao","doi":"10.1109/icise-ie58127.2022.00013","DOIUrl":null,"url":null,"abstract":"For the academic performance prediction problem, a hybrid neural network model (HNNM) is constructed using the advantages of CNN and GRU in processing temporal and spatial data, respectively. Through an online teaching platform, rich data types are collected and the HNNM model is used to study students’ life behavior and classroom learning behavior. Through experiments in several courses, the results show that the HNNM model has high prediction accuracy and can provide more reasonable guidance and suggestions for course teaching improvement and student academic warning.","PeriodicalId":376815,"journal":{"name":"2022 3rd International Conference on Information Science and Education (ICISE-IE)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 3rd International Conference on Information Science and Education (ICISE-IE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icise-ie58127.2022.00013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

For the academic performance prediction problem, a hybrid neural network model (HNNM) is constructed using the advantages of CNN and GRU in processing temporal and spatial data, respectively. Through an online teaching platform, rich data types are collected and the HNNM model is used to study students’ life behavior and classroom learning behavior. Through experiments in several courses, the results show that the HNNM model has high prediction accuracy and can provide more reasonable guidance and suggestions for course teaching improvement and student academic warning.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于混合神经网络的课程成绩预测方法
针对学业成绩预测问题,利用CNN和GRU在处理时间和空间数据方面的优势,构建了混合神经网络模型(HNNM)。通过在线教学平台,收集丰富的数据类型,运用HNNM模型对学生的生活行为和课堂学习行为进行研究。通过几门课程的实验,结果表明HNNM模型具有较高的预测精度,可以为课程教学改进和学生学业预警提供更合理的指导和建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Social Recommendation Algorithm Based on Learning Interests and Styles for Online Blended Learning Platform Development of VisualC++, a multimedia speech teaching system Mining Sentiment-Dependent Linguistic Patterns from Automotive Reviews for Product Defects Studying on Normal Distribution and Algorithms The Analysis of Influencing Factors of Wisdom Classroom Teaching Based on Random Forest
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1