Test Automation with Grad-CAM Heatmaps - A Future Pipe Segment in MLOps for Vision AI?

Markus Borg, Ronald Jabangwe, Simon Åberg, Arvid Ekblom, Ludwig Hedlund, August Lidfeldt
{"title":"Test Automation with Grad-CAM Heatmaps - A Future Pipe Segment in MLOps for Vision AI?","authors":"Markus Borg, Ronald Jabangwe, Simon Åberg, Arvid Ekblom, Ludwig Hedlund, August Lidfeldt","doi":"10.1109/ICSTW52544.2021.00039","DOIUrl":null,"url":null,"abstract":"Machine Learning (ML) is a fundamental part of modern perception systems. In the last decade, the performance of computer vision using trained deep neural networks has outperformed previous approaches based on careful feature engineering. However, the opaqueness of large ML models is a substantial impediment for critical applications such as in the automotive context. As a remedy, Gradient-weighted Class Activation Mapping (Grad-CAM) has been proposed to provide visual explanations of model internals. In this paper, we demonstrate how Grad-CAM heatmaps can be used to increase the explainability of an image recognition model trained for a pedestrian underpass. We argue how the heatmaps support compliance to the EU’s seven key requirements for Trustworthy AI. Finally, we propose adding automated heatmap analysis as a pipe segment in an MLOps pipeline. We believe that such a building block can be used to automatically detect if a trained ML-model is activated based on invalid pixels in test images, suggesting biased models.","PeriodicalId":371680,"journal":{"name":"2021 IEEE International Conference on Software Testing, Verification and Validation Workshops (ICSTW)","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Software Testing, Verification and Validation Workshops (ICSTW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSTW52544.2021.00039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Machine Learning (ML) is a fundamental part of modern perception systems. In the last decade, the performance of computer vision using trained deep neural networks has outperformed previous approaches based on careful feature engineering. However, the opaqueness of large ML models is a substantial impediment for critical applications such as in the automotive context. As a remedy, Gradient-weighted Class Activation Mapping (Grad-CAM) has been proposed to provide visual explanations of model internals. In this paper, we demonstrate how Grad-CAM heatmaps can be used to increase the explainability of an image recognition model trained for a pedestrian underpass. We argue how the heatmaps support compliance to the EU’s seven key requirements for Trustworthy AI. Finally, we propose adding automated heatmap analysis as a pipe segment in an MLOps pipeline. We believe that such a building block can be used to automatically detect if a trained ML-model is activated based on invalid pixels in test images, suggesting biased models.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用Grad-CAM热图的测试自动化-视觉AI的MLOps的未来管道段?
机器学习(ML)是现代感知系统的基本组成部分。在过去的十年中,使用经过训练的深度神经网络的计算机视觉的性能优于先前基于仔细特征工程的方法。然而,大型机器学习模型的不透明性对汽车等关键应用来说是一个重大障碍。作为补救措施,梯度加权类激活映射(Grad-CAM)被提出提供模型内部的可视化解释。在本文中,我们演示了如何使用Grad-CAM热图来增加为行人地下通道训练的图像识别模型的可解释性。我们讨论了热图如何支持遵守欧盟对可信赖人工智能的七项关键要求。最后,我们建议在MLOps管道中添加自动热图分析作为管道段。我们相信,这样的构建块可以用来自动检测训练后的ml模型是否基于测试图像中的无效像素被激活,从而提示有偏差的模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Effectively Sampling Higher Order Mutants Using Causal Effect Syntax-Tree Similarity for Test-Case Derivability in Software Requirements Automatic Equivalent Mutants Classification Using Abstract Syntax Tree Neural Networks Online GANs for Automatic Performance Testing A Combinatorial Approach to Explaining Image Classifiers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1