Image Copy-Move Forgery Detection Based on SIFT-BRISK

Tianyang Du, Lihua Tian, Chen Li
{"title":"Image Copy-Move Forgery Detection Based on SIFT-BRISK","authors":"Tianyang Du, Lihua Tian, Chen Li","doi":"10.1109/ICCAIS.2018.8570513","DOIUrl":null,"url":null,"abstract":"Copy-move forgery is the most common type of image forgery. SIFT is widely used in copy-move forgery detection due to its excellent scale invariance and rotation invariance. However, the detection efficiency of the traditional SIFT-based method has not performed very well because its high-dimensional feature descriptors leads to a long time of feature extracting and matching. In this paper we propose an efficient method for copy-move forgery detection. First, for the forged image, we determine the SIFT keypoints with scale and position information. Then, we use BRISK algorithm to generate a binary feature descriptor for each keypoint. Finally, we can use Hamming distance to quickly match similar keypoints. The experimental results show that the proposed method obtains a significant improvement in the speed of forgery detection under the premise of better robustness.","PeriodicalId":223618,"journal":{"name":"2018 International Conference on Control, Automation and Information Sciences (ICCAIS)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Control, Automation and Information Sciences (ICCAIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCAIS.2018.8570513","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Copy-move forgery is the most common type of image forgery. SIFT is widely used in copy-move forgery detection due to its excellent scale invariance and rotation invariance. However, the detection efficiency of the traditional SIFT-based method has not performed very well because its high-dimensional feature descriptors leads to a long time of feature extracting and matching. In this paper we propose an efficient method for copy-move forgery detection. First, for the forged image, we determine the SIFT keypoints with scale and position information. Then, we use BRISK algorithm to generate a binary feature descriptor for each keypoint. Finally, we can use Hamming distance to quickly match similar keypoints. The experimental results show that the proposed method obtains a significant improvement in the speed of forgery detection under the premise of better robustness.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于SIFT-BRISK的图像复制-移动伪造检测
复制-移动伪造是最常见的图像伪造类型。SIFT具有良好的尺度不变性和旋转不变性,被广泛应用于复制-移动伪造检测中。然而,传统的基于sift的方法由于其高维特征描述子导致特征提取和匹配时间过长,检测效率不高。本文提出了一种有效的复制-移动伪造检测方法。首先,针对伪造图像,利用尺度和位置信息确定SIFT关键点;然后,我们使用BRISK算法为每个关键点生成一个二进制特征描述符。最后,我们可以利用汉明距离快速匹配相似的关键点。实验结果表明,该方法在具有较好鲁棒性的前提下,显著提高了伪造检测速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Seventh International Conference on Control Animation and Information Sciences Cell Lineage Tracking Based on Labeled Random Finite Set Filtering Fault Detection Method Based on Improved Isomap and SVM in Noise-Containing Nonlinear Process Multivariable Composite Prediction Based on Kalman Filtering and Charging and Discharging Scheduling Strategy of Energy Storage System A Novel Short Time H∞ Filtering for Discrete Linear Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1