Automatic Image Segmentation for Microwave Tomography (MWT): From Implementation to Comparative Evaluation

Yuchong Zhang, Yong Ma, Adel Omrani, Rahul Yadav, M. Fjeld, M. Fratarcangeli
{"title":"Automatic Image Segmentation for Microwave Tomography (MWT): From Implementation to Comparative Evaluation","authors":"Yuchong Zhang, Yong Ma, Adel Omrani, Rahul Yadav, M. Fjeld, M. Fratarcangeli","doi":"10.1145/3356422.3356437","DOIUrl":null,"url":null,"abstract":"Inspired by its high performance in image-based medical analysis, this poster paper explores the use of advanced segmentation techniques for industrial Microwave Tomography (MWT). Our context is the visual analysis of moisture levels in porous foams undergoing microwave drying. We propose an automatic segmentation technique---MWT Segmentation based on K-means (MWTS-KM) and demonstrate its efficiency and accuracy for industrial use. MWTS-KM consists of three stages: image augmentation, grey-scale conversion, and K-means implementation. To estimate the performance of this technique, we empirically benchmark its efficiency and accuracy against two well-established alternatives: Otsu and K-means. To elicit performance data, three metrics (Jaccard index, Dice coefficient and false positive) are used. Based on our experiments, our results indicate that MWTS-KM outperforms the well-established Otsu and K-means.","PeriodicalId":197051,"journal":{"name":"Proceedings of the 12th International Symposium on Visual Information Communication and Interaction","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 12th International Symposium on Visual Information Communication and Interaction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3356422.3356437","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Inspired by its high performance in image-based medical analysis, this poster paper explores the use of advanced segmentation techniques for industrial Microwave Tomography (MWT). Our context is the visual analysis of moisture levels in porous foams undergoing microwave drying. We propose an automatic segmentation technique---MWT Segmentation based on K-means (MWTS-KM) and demonstrate its efficiency and accuracy for industrial use. MWTS-KM consists of three stages: image augmentation, grey-scale conversion, and K-means implementation. To estimate the performance of this technique, we empirically benchmark its efficiency and accuracy against two well-established alternatives: Otsu and K-means. To elicit performance data, three metrics (Jaccard index, Dice coefficient and false positive) are used. Based on our experiments, our results indicate that MWTS-KM outperforms the well-established Otsu and K-means.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
微波断层成像(MWT)的自动图像分割:从实现到比较评价
受其在基于图像的医学分析中的高性能的启发,这篇海报论文探讨了在工业微波断层扫描(MWT)中使用高级分割技术。我们的背景是微波干燥多孔泡沫中的水分水平的可视化分析。本文提出了一种基于k均值的MWT分割技术,并在工业应用中证明了其效率和准确性。MWTS-KM包括三个阶段:图像增强、灰度转换和K-means实现。为了评估该技术的性能,我们根据两种成熟的替代方法(Otsu和K-means)对其效率和准确性进行了经验基准测试。为了获得性能数据,使用了三个指标(Jaccard指数、Dice系数和假阳性)。基于我们的实验,我们的结果表明MWTS-KM优于公认的Otsu和K-means。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Automatic Driving of End-to-end Convolutional Neural Network Based on MobileNet-V2 Migration Learning Occlusion Management Techniques for the Visualization of Transportation Networks in Virtual 3D City Models Keyword Analysis Visualization for Chinese Historical Texts The Application of Visual Narration in Academic Research Algorithmic Animation in supporting Dance and Choreography
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1