{"title":"Automated Robotic Moisture Monitoring in Agricultural Fields","authors":"P. Senthil, I. S. Akila","doi":"10.1109/ISITIA.2018.8711348","DOIUrl":null,"url":null,"abstract":"Monitoring moisture level of land in a large-scale plantation is tedious. The main objective of this project is to use a robotic kit in collaboration with the on-field moisture sensor circuits, thereby creating an efficient and economical moisture monitoring system. A large agriculture field is divided into smaller grids. Each grid is placed with a moisture sensor. Whenever a sensor reports the soil to be dry, the robot goes to the concerned field for inspection. The path to the concerned field is found by applying Dijkstra's shortest path algorithm on the aerial image of the field. Then the total moisture content of the field is calculated by the robot using suitable image processing algorithms and reported accordingly. For developing and testing this work, a small study field was set up above which a camera was mounted at an appropriate height to capture its aerial view. Thus a prototype for an automated system of monitoring agricultural fields' moisture has been developed through this work.","PeriodicalId":388463,"journal":{"name":"2018 International Seminar on Intelligent Technology and Its Applications (ISITIA)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Seminar on Intelligent Technology and Its Applications (ISITIA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISITIA.2018.8711348","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
Monitoring moisture level of land in a large-scale plantation is tedious. The main objective of this project is to use a robotic kit in collaboration with the on-field moisture sensor circuits, thereby creating an efficient and economical moisture monitoring system. A large agriculture field is divided into smaller grids. Each grid is placed with a moisture sensor. Whenever a sensor reports the soil to be dry, the robot goes to the concerned field for inspection. The path to the concerned field is found by applying Dijkstra's shortest path algorithm on the aerial image of the field. Then the total moisture content of the field is calculated by the robot using suitable image processing algorithms and reported accordingly. For developing and testing this work, a small study field was set up above which a camera was mounted at an appropriate height to capture its aerial view. Thus a prototype for an automated system of monitoring agricultural fields' moisture has been developed through this work.