An operator method for semi-supervised learning

W. Lu, Yan Bai, Yi Tang, Yanfang Tao
{"title":"An operator method for semi-supervised learning","authors":"W. Lu, Yan Bai, Yi Tang, Yanfang Tao","doi":"10.1109/ICWAPR.2009.5207473","DOIUrl":null,"url":null,"abstract":"We focus on a semi-supervised framework that incorporates labeled and unlabeled data in a general- purpose learner. We proposed a semi-learning algorithm based on a novel form of regularization that allows us to emphasize the complexity of the representation of learners. With operator method, the optimal learner learned by such algorith is explicitly represented by sampling operator when the hyperspace is a reproducing kernel Hilbert space. Based on such explicit representation, a simple and convenient algorithm is designed. Some preliminary experiments validate the effectiveness of the algorith.","PeriodicalId":424264,"journal":{"name":"2009 International Conference on Wavelet Analysis and Pattern Recognition","volume":"85 22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Conference on Wavelet Analysis and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICWAPR.2009.5207473","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We focus on a semi-supervised framework that incorporates labeled and unlabeled data in a general- purpose learner. We proposed a semi-learning algorithm based on a novel form of regularization that allows us to emphasize the complexity of the representation of learners. With operator method, the optimal learner learned by such algorith is explicitly represented by sampling operator when the hyperspace is a reproducing kernel Hilbert space. Based on such explicit representation, a simple and convenient algorithm is designed. Some preliminary experiments validate the effectiveness of the algorith.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
半监督学习的算子方法
我们关注的是一个半监督的框架,它将标记和未标记的数据合并到一个通用的学习器中。我们提出了一种基于一种新的正则化形式的半学习算法,它使我们能够强调学习者表示的复杂性。采用算子方法,当超空间为再现核希尔伯特空间时,该算法学习到的最优学习者用采样算子显式表示。基于这种显式表示,设计了一种简单方便的算法。初步实验验证了该算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Analysis of Laplacian Support Vector Machines Intelligent computerized fabric texture recognition system by using Grey-based neural fuzzy clustering A new cooperative algorithm for signal detection Improved algorithm of the Back Propagation neural network and its application in fault diagnosis of air-cooling condenser HSICT: A method for romoving highlight and shading in color image
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1