DoS and DDoS attack detection using Mathematical and Entropy Methods

Sumedha Janani Siriyapuraju, V. Gowri, Srilikhita Balla, Mukesh Kumar Vanika, Abhay Gandhi
{"title":"DoS and DDoS attack detection using Mathematical and Entropy Methods","authors":"Sumedha Janani Siriyapuraju, V. Gowri, Srilikhita Balla, Mukesh Kumar Vanika, Abhay Gandhi","doi":"10.1109/PCEMS58491.2023.10136042","DOIUrl":null,"url":null,"abstract":"The idea behind a Denial of Service(DoS) attack is to overload or flood the system or the network with systems that the system becomes incapacitated. A Distributed Denial of Service(DDoS) attack is a similar attack with multiple systems attacking one victim. In this paper we discuss the methods to detect these attacks in a working system using mathematical and entropy based techniques. The proposed mathematical model uses both the mean and standard deviation as thresholds for classification as they work better when the data is unsymmetrical like a real working system’s network data. The proposed entropy model uses a combination of Shannon’s entropy and the mathematical threshold. This model takes care of the anomalous non-attack cases like a ping to a blocked IP address or rejected packets.","PeriodicalId":330870,"journal":{"name":"2023 2nd International Conference on Paradigm Shifts in Communications Embedded Systems, Machine Learning and Signal Processing (PCEMS)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 2nd International Conference on Paradigm Shifts in Communications Embedded Systems, Machine Learning and Signal Processing (PCEMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PCEMS58491.2023.10136042","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The idea behind a Denial of Service(DoS) attack is to overload or flood the system or the network with systems that the system becomes incapacitated. A Distributed Denial of Service(DDoS) attack is a similar attack with multiple systems attacking one victim. In this paper we discuss the methods to detect these attacks in a working system using mathematical and entropy based techniques. The proposed mathematical model uses both the mean and standard deviation as thresholds for classification as they work better when the data is unsymmetrical like a real working system’s network data. The proposed entropy model uses a combination of Shannon’s entropy and the mathematical threshold. This model takes care of the anomalous non-attack cases like a ping to a blocked IP address or rejected packets.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用数学和熵方法检测DoS和DDoS攻击
拒绝服务(DoS)攻击背后的思想是用系统使系统或网络过载或泛滥,从而使系统丧失能力。分布式拒绝服务(DDoS)攻击是一种类似的攻击,由多个系统攻击一个受害者。在本文中,我们讨论了在工作系统中使用基于数学和熵的技术检测这些攻击的方法。所提出的数学模型同时使用均值和标准差作为分类阈值,因为当数据不对称(如实际工作系统的网络数据)时,它们更有效。所提出的熵模型结合了香农熵和数学阈值。该模型处理异常的非攻击情况,如ping到被阻止的IP地址或拒绝的数据包。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Interactive Zira Voice Assistant- A Personalized Desktop Application Gait-Face Based Human Recognition From Distant Video Survey on Diverse Image Inpainting using Diffusion Models Survey, Analysis and Association Rules derivation using Apriori Method for buying preference amongst kids of age-group 5 to 9 in India Implementing Chaos Based Optimisations on Neural Networks for Predictions of Distributed Denial-of-Service (DDoS) Attacks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1