LiGCN: Label-interpretable Graph Convolutional Networks for Multi-label Text Classification

Irene Li, Aosong Feng, Hao Wu, Tianxiao Li, T. Suzumura, Ruihai Dong
{"title":"LiGCN: Label-interpretable Graph Convolutional Networks for Multi-label Text Classification","authors":"Irene Li, Aosong Feng, Hao Wu, Tianxiao Li, T. Suzumura, Ruihai Dong","doi":"10.18653/v1/2022.dlg4nlp-1.7","DOIUrl":null,"url":null,"abstract":"Multi-label text classification (MLTC) is an attractive and challenging task in natural language processing (NLP). Compared with single-label text classification, MLTC has a wider range of applications in practice. In this paper, we propose a label-interpretable graph convolutional network model to solve the MLTC problem by modeling tokens and labels as nodes in a heterogeneous graph. In this way, we are able to take into account multiple relationships including token-level relationships. Besides, the model allows better interpretability for predicted labels as the token-label edges are exposed. We evaluate our method on four real-world datasets and it achieves competitive scores against selected baseline methods. Specifically, this model achieves a gain of 0.14 on the F1 score in the small label set MLTC, and 0.07 in the large label set scenario.","PeriodicalId":367475,"journal":{"name":"Proceedings of the 2nd Workshop on Deep Learning on Graphs for Natural Language Processing (DLG4NLP 2022)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2nd Workshop on Deep Learning on Graphs for Natural Language Processing (DLG4NLP 2022)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/2022.dlg4nlp-1.7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Multi-label text classification (MLTC) is an attractive and challenging task in natural language processing (NLP). Compared with single-label text classification, MLTC has a wider range of applications in practice. In this paper, we propose a label-interpretable graph convolutional network model to solve the MLTC problem by modeling tokens and labels as nodes in a heterogeneous graph. In this way, we are able to take into account multiple relationships including token-level relationships. Besides, the model allows better interpretability for predicted labels as the token-label edges are exposed. We evaluate our method on four real-world datasets and it achieves competitive scores against selected baseline methods. Specifically, this model achieves a gain of 0.14 on the F1 score in the small label set MLTC, and 0.07 in the large label set scenario.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于多标签文本分类的标签可解释图卷积网络
多标签文本分类(MLTC)是自然语言处理(NLP)中一个极具挑战性的课题。与单标签文本分类相比,多标签文本分类在实践中有更广泛的应用。在本文中,我们提出了一个标签可解释的图卷积网络模型,通过将标记和标记建模为异构图中的节点来解决MLTC问题。通过这种方式,我们能够考虑多种关系,包括令牌级关系。此外,该模型允许更好的可解释性预测标签,因为令牌标签的边缘是公开的。我们在四个真实世界的数据集上评估了我们的方法,它与选定的基线方法相比获得了具有竞争力的分数。具体来说,该模型在小标签集MLTC场景下的F1得分增益为0.14,在大标签集场景下的F1得分增益为0.07。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
LiGCN: Label-interpretable Graph Convolutional Networks for Multi-label Text Classification Graph Neural Networks for Adapting Off-the-shelf General Domain Language Models to Low-Resource Specialised Domains Explicit Graph Reasoning Fusing Knowledge and Contextual Information for Multi-hop Question Answering Improving Neural Machine Translation with the Abstract Meaning Representation by Combining Graph and Sequence Transformers Scene Graph Parsing via Abstract Meaning Representation in Pre-trained Language Models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1