L-band staring radar performance against micro-drones

M. Jahangir, C. Baker
{"title":"L-band staring radar performance against micro-drones","authors":"M. Jahangir, C. Baker","doi":"10.23919/IRS.2018.8448107","DOIUrl":null,"url":null,"abstract":"Non-cooperative surveillance of small Unmanned Aerial Systems (sUAS) commonly referred to as drones, is regarded as a key capability in the development of the EU SESAR U-SPACE vision that is aimed at unlocking airspace for operations of drones. However, drones are particularly difficult to detect with conventional non-cooperative surveillance sensors such as scanning radars as drones have a small RCS and fly low and slow. Here, we use an L-Band staring radar sensor that employs a fully digitized 2-D receiver array to achieve 3-D broad-volume continuous surveillance. The continuity of surveillance allows sufficiently high detection sensitivity to be achieved enabling location of rapidly manoeuvring drones operating in Electro-magnetically congested environments such as airports. Here, we present results from live trials using a staring radar sensor to detect small drones. Detection performance is compared with theoretical predictions.","PeriodicalId":436201,"journal":{"name":"2018 19th International Radar Symposium (IRS)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 19th International Radar Symposium (IRS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/IRS.2018.8448107","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

Non-cooperative surveillance of small Unmanned Aerial Systems (sUAS) commonly referred to as drones, is regarded as a key capability in the development of the EU SESAR U-SPACE vision that is aimed at unlocking airspace for operations of drones. However, drones are particularly difficult to detect with conventional non-cooperative surveillance sensors such as scanning radars as drones have a small RCS and fly low and slow. Here, we use an L-Band staring radar sensor that employs a fully digitized 2-D receiver array to achieve 3-D broad-volume continuous surveillance. The continuity of surveillance allows sufficiently high detection sensitivity to be achieved enabling location of rapidly manoeuvring drones operating in Electro-magnetically congested environments such as airports. Here, we present results from live trials using a staring radar sensor to detect small drones. Detection performance is compared with theoretical predictions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
l波段瞄准雷达对微型无人机的性能
小型无人机系统(sUAS)的非合作监视通常被称为无人机,被视为欧盟SESAR U-SPACE愿景发展的关键能力,旨在为无人机的操作解锁空域。然而,由于无人机的RCS很小,飞行速度又低又慢,用传统的非合作监视传感器(如扫描雷达)很难探测到无人机。在这里,我们使用l波段凝视雷达传感器,该传感器采用完全数字化的二维接收器阵列来实现三维大容量连续监视。监视的连续性允许实现足够高的探测灵敏度,使在电磁拥挤环境(如机场)中操作的快速机动无人机能够定位。在这里,我们展示了使用凝视雷达传感器检测小型无人机的现场试验结果。将检测性能与理论预测结果进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
High Precision Surface Reconstruction Based on Coherent Near Field Synthetic Aperture Radar Scans [Copyright notice] The Distributed Radar System for Monitoring the Surrounding Situation for the Intelligent Vehicle Indoor Positioning and Body Direction Measurement System Using IR-UWB Radar Featureless Traffic Monitoring
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1