High-order autoregressive modeling of individual speaker's qualities

G. Tamulevicius, J. Kaukenas
{"title":"High-order autoregressive modeling of individual speaker's qualities","authors":"G. Tamulevicius, J. Kaukenas","doi":"10.1109/AIEEE.2017.8270551","DOIUrl":null,"url":null,"abstract":"The modeling of individual speaker's properties is presented in this paper. The classic Autoregressive (AR) model is proposed for this purpose. The employed model order and parameter estimation technique gave much higher model order (up to 200 in some cases) in detailed spectral analysis of speech signals. Comparison of high-order AR model-based and Fourier transform-based spectral density functions suggests an idea that only a high-order AR model yields accurate values of fundamental and overtone frequencies. Results of initial experimental study show the potential of high-order AR model to be applied in estimation of individual speaker's spectral qualities and emotional state, evaluation of recover dynamics of patient's vocal folds.","PeriodicalId":224275,"journal":{"name":"2017 5th IEEE Workshop on Advances in Information, Electronic and Electrical Engineering (AIEEE)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 5th IEEE Workshop on Advances in Information, Electronic and Electrical Engineering (AIEEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AIEEE.2017.8270551","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The modeling of individual speaker's properties is presented in this paper. The classic Autoregressive (AR) model is proposed for this purpose. The employed model order and parameter estimation technique gave much higher model order (up to 200 in some cases) in detailed spectral analysis of speech signals. Comparison of high-order AR model-based and Fourier transform-based spectral density functions suggests an idea that only a high-order AR model yields accurate values of fundamental and overtone frequencies. Results of initial experimental study show the potential of high-order AR model to be applied in estimation of individual speaker's spectral qualities and emotional state, evaluation of recover dynamics of patient's vocal folds.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
个体说话者品质的高阶自回归建模
本文对单个说话人的特性进行了建模。为此提出了经典的自回归(AR)模型。采用模型阶数和参数估计技术对语音信号进行详细的频谱分析,得到了更高的模型阶数(在某些情况下高达200阶)。基于高阶AR模型和基于傅立叶变换的谱密度函数的比较表明,只有高阶AR模型才能产生准确的基频和泛音频率值。初步的实验研究结果表明,高阶AR模型在评估个体说话人的频谱质量和情绪状态、评估患者声带恢复动态等方面具有很大的应用潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Application of educational data mining to create intelligent multi-agent personalised learning system Stereoscopic focus moment identification based on pupil dynamics measures Dynamic characteristic evaluation of a 600V reverse blocking IGBT device Experimental testing of distance protection performance in transient fault path resistance environment Edge computing in IoT: Preliminary results on modeling and performance analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1