Some algorithms for correlated bandits with non-stationary rewards: Regret bounds and applications

Prathamesh Mayekar, N. Hemachandra
{"title":"Some algorithms for correlated bandits with non-stationary rewards: Regret bounds and applications","authors":"Prathamesh Mayekar, N. Hemachandra","doi":"10.1145/2888451.2888475","DOIUrl":null,"url":null,"abstract":"We first propose an online learning model wherein rewards for different actions/arms used by the user can be correlated and the reward stream can be non-stationary. Thus, this extends the standard multi-armed bandit learning model. We propose two algorthims, Greedy and Regression based UCB, that attempt to minimize the expected regret. We also obtain non-trivial upper bounds for the expected regret through theoretical analysis. We also provide some evidence for sub-polynomial increase in expected regret upon appropriate tuning of algorithm input parameters. These models are motivated by the problem of dynamic pricing of a product faced by a typical online retailer.","PeriodicalId":136431,"journal":{"name":"Proceedings of the 3rd IKDD Conference on Data Science, 2016","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 3rd IKDD Conference on Data Science, 2016","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2888451.2888475","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We first propose an online learning model wherein rewards for different actions/arms used by the user can be correlated and the reward stream can be non-stationary. Thus, this extends the standard multi-armed bandit learning model. We propose two algorthims, Greedy and Regression based UCB, that attempt to minimize the expected regret. We also obtain non-trivial upper bounds for the expected regret through theoretical analysis. We also provide some evidence for sub-polynomial increase in expected regret upon appropriate tuning of algorithm input parameters. These models are motivated by the problem of dynamic pricing of a product faced by a typical online retailer.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有非平稳奖励的相关盗匪算法:后悔界及其应用
我们首先提出了一个在线学习模型,其中用户使用的不同动作/手臂的奖励可以相互关联,并且奖励流可以是非平稳的。因此,这扩展了标准的多臂强盗学习模型。我们提出了两种算法,贪心和基于回归的UCB,试图最小化预期后悔。通过理论分析,得到了期望后悔的非平凡上界。我们还提供了一些证据表明,在适当调整算法输入参数后,期望遗憾的次多项式增加。这些模型的动机是典型的在线零售商所面临的产品动态定价问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
On the Dynamics of Username Changing Behavior on Twitter Smart filters for social retrieval Improving Urban Transportation through Social Media Analytics AMEO 2015: A dataset comprising AMCAT test scores, biodata details and employment outcomes of job seekers Learning from Gurus: Analysis and Modeling of Reopened Questions on Stack Overflow
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1