Multi-Objective Task Assignment and Multiagent Planning with Hybrid GPU-CPU Acceleration

T. Robinson, Guoxin Su
{"title":"Multi-Objective Task Assignment and Multiagent Planning with Hybrid GPU-CPU Acceleration","authors":"T. Robinson, Guoxin Su","doi":"10.48550/arXiv.2305.04397","DOIUrl":null,"url":null,"abstract":"Allocation and planning with a collection of tasks and a group of agents is an important problem in multiagent systems. One commonly faced bottleneck is scalability, as in general the multiagent model increases exponentially in size with the number of agents. We consider the combination of random task assignment and multiagent planning under multiple-objective constraints, and show that this problem can be decentralised to individual agent-task models. We present an algorithm of point-oriented Pareto computation, which checks whether a point corresponding to given cost and probability thresholds for our formal problem is feasible or not. If the given point is infeasible, our algorithm finds a Pareto-optimal point which is closest to the given point. We provide the first multi-objective model checking framework that simultaneously uses GPU and multi-core acceleration. Our framework manages CPU and GPU devices as a load balancing problem for parallel computation. Our experiments demonstrate that parallelisation achieves significant run time speed-up over sequential computation.","PeriodicalId":436677,"journal":{"name":"NASA Formal Methods","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NASA Formal Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2305.04397","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Allocation and planning with a collection of tasks and a group of agents is an important problem in multiagent systems. One commonly faced bottleneck is scalability, as in general the multiagent model increases exponentially in size with the number of agents. We consider the combination of random task assignment and multiagent planning under multiple-objective constraints, and show that this problem can be decentralised to individual agent-task models. We present an algorithm of point-oriented Pareto computation, which checks whether a point corresponding to given cost and probability thresholds for our formal problem is feasible or not. If the given point is infeasible, our algorithm finds a Pareto-optimal point which is closest to the given point. We provide the first multi-objective model checking framework that simultaneously uses GPU and multi-core acceleration. Our framework manages CPU and GPU devices as a load balancing problem for parallel computation. Our experiments demonstrate that parallelisation achieves significant run time speed-up over sequential computation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
GPU-CPU混合加速下的多目标任务分配与多智能体规划
任务集合和一组智能体的分配和规划是多智能体系统中的一个重要问题。一个常见的瓶颈是可伸缩性,因为通常多代理模型的大小随着代理数量呈指数增长。我们考虑了多目标约束下的随机任务分配和多智能体规划的结合,并证明了该问题可以分散到单个智能体-任务模型中。本文提出了一种面向点的帕累托计算算法,用于检验给定代价和概率阈值对应的点是否可行。如果给定的点是不可行的,我们的算法寻找最接近给定点的帕累托最优点。我们提供了第一个同时使用GPU和多核加速的多目标模型检查框架。我们的框架管理CPU和GPU设备作为并行计算的负载平衡问题。我们的实验表明,与顺序计算相比,并行化实现了显著的运行时间加速。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multi-Objective Task Assignment and Multiagent Planning with Hybrid GPU-CPU Acceleration A Linear Weight Transfer Rule for Local Search Automata-Based Software Model Checking of Hyperproperties Strategy Synthesis in Markov Decision Processes Under Limited Sampling Access Formalizing Piecewise Affine Activation Functions of Neural Networks in Coq
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1