A Note on Confidence Intervals and Model Specification

Thomas Otter
{"title":"A Note on Confidence Intervals and Model Specification","authors":"Thomas Otter","doi":"10.15358/0344-1369-2019-4-33","DOIUrl":null,"url":null,"abstract":"Empirical research in marketing often is, at least in parts, exploratory. The goal of exploratory research, by definition, extends beyond the empirical calibration of parameters in well established models and includes the empirical assessment of different model specifications. In this context researchers often rely on the statistical information about parameters in a given model to learn about likely model structures. An example is the search for the 'true' set of covariates in a regression model based on confidence intervals of regression coefficients. The purpose of this paper is to illustrate and compare different measures of statistical information about model parameters in the context of a generalized linear model: classical confidence intervals, bootstrapped confidence intervals, and Bayesian posterior credible intervals from a model that adapts its dimensionality as a function of the information in the data. I find that inference from the adaptive Bayesian model dominates that based on classical and bootstrapped intervals in a given model.","PeriodicalId":446283,"journal":{"name":"Marketing ZFP","volume":"81 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marketing ZFP","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15358/0344-1369-2019-4-33","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Empirical research in marketing often is, at least in parts, exploratory. The goal of exploratory research, by definition, extends beyond the empirical calibration of parameters in well established models and includes the empirical assessment of different model specifications. In this context researchers often rely on the statistical information about parameters in a given model to learn about likely model structures. An example is the search for the 'true' set of covariates in a regression model based on confidence intervals of regression coefficients. The purpose of this paper is to illustrate and compare different measures of statistical information about model parameters in the context of a generalized linear model: classical confidence intervals, bootstrapped confidence intervals, and Bayesian posterior credible intervals from a model that adapts its dimensionality as a function of the information in the data. I find that inference from the adaptive Bayesian model dominates that based on classical and bootstrapped intervals in a given model.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
关于置信区间和模型规范的说明
市场营销的实证研究通常是探索性的,至少部分是这样。探索性研究的目标,顾名思义,超越了对成熟模型参数的经验校准,还包括对不同模型规格的经验评估。在这种情况下,研究人员通常依赖于给定模型中参数的统计信息来了解可能的模型结构。一个例子是在基于回归系数置信区间的回归模型中搜索“真实”的协变量集。本文的目的是说明和比较在广义线性模型背景下关于模型参数的统计信息的不同度量:经典置信区间,自举置信区间和贝叶斯后验可信区间,该模型将其维度作为数据中信息的函数进行调整。我发现自适应贝叶斯模型的推断在给定模型中优于基于经典和自举区间的推断。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
How Online Trust and Online Brand Equity Translate Online- and Omni-Channel-Specific Instruments into Repurchase Intentions Multi-Channel Management and Design: An Analysis of their Impact on Multi-Channel Conflict and Success Do Sustainability Labels Reinforce Health Claims - And Vice Versa? The Impact of Bodily Behaviors of Sales Representatives on Charisma Evaluations by Consumers: A Time-Series Perspective Drivers of Corporate Reputation and Its Differential Impact on Customer Loyalty
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1