Deep Learning Enabled Nanophotonics

Lujun Huang, Lei Xu, A. Miroshnichenko
{"title":"Deep Learning Enabled Nanophotonics","authors":"Lujun Huang, Lei Xu, A. Miroshnichenko","doi":"10.5772/intechopen.93289","DOIUrl":null,"url":null,"abstract":"Deep learning has become a vital approach to solving a big-data-driven problem. It has found tremendous applications in computer vision and natural language processing. More recently, deep learning has been widely used in optimising the performance of nanophotonic devices, where the conventional computational approach may require much computation time and significant computation source. In this chapter, we briefly review the recent progress of deep learning in nanophotonics. We overview the applications of the deep learning approach to optimising the various nanophotonic devices. It includes multilayer structures, plasmonic/dielectric metasurfaces and plasmonic chiral metamaterials. Also, nanophotonic can directly serve as an ideal platform to mimic optical neural networks based on nonlinear optical media, which in turn help to achieve high-performance photonic chips that may not be realised based on conventional design method.","PeriodicalId":129871,"journal":{"name":"Advances and Applications in Deep Learning","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances and Applications in Deep Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/intechopen.93289","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

Deep learning has become a vital approach to solving a big-data-driven problem. It has found tremendous applications in computer vision and natural language processing. More recently, deep learning has been widely used in optimising the performance of nanophotonic devices, where the conventional computational approach may require much computation time and significant computation source. In this chapter, we briefly review the recent progress of deep learning in nanophotonics. We overview the applications of the deep learning approach to optimising the various nanophotonic devices. It includes multilayer structures, plasmonic/dielectric metasurfaces and plasmonic chiral metamaterials. Also, nanophotonic can directly serve as an ideal platform to mimic optical neural networks based on nonlinear optical media, which in turn help to achieve high-performance photonic chips that may not be realised based on conventional design method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
深度学习支持纳米光子学
深度学习已经成为解决大数据驱动问题的重要方法。它在计算机视觉和自然语言处理中得到了巨大的应用。近年来,深度学习被广泛应用于优化纳米光子器件的性能,而传统的计算方法可能需要大量的计算时间和大量的计算源。在本章中,我们简要回顾了纳米光子学中深度学习的最新进展。我们概述了深度学习方法在优化各种纳米光子器件中的应用。它包括多层结构、等离子体/介质超表面和等离子体手性超材料。此外,纳米光子可以直接作为一个理想的平台来模拟基于非线性光介质的光神经网络,从而有助于实现基于传统设计方法可能无法实现的高性能光子芯片。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Transfer Learning and Deep Domain Adaptation Deep Learning Enabled Nanophotonics Explainable Artificial Intelligence (xAI) Approaches and Deep Meta-Learning Models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1