Disorder classification in the regulatory mechanism of the cardiovascular system

A. Jalali, A. Ghaffari, M. Ghasemi, H. Sadabadi, P. Ghorbanian, H. Golbayani
{"title":"Disorder classification in the regulatory mechanism of the cardiovascular system","authors":"A. Jalali, A. Ghaffari, M. Ghasemi, H. Sadabadi, P. Ghorbanian, H. Golbayani","doi":"10.1109/CIC.2007.4745529","DOIUrl":null,"url":null,"abstract":"An approach to classify disorders in autonomic control of cardiovascular system is proposed in this paper. The target of this study is to highlight main features of malfunctions in cardiovascular system due to autonomic disorder. Collecting the data from the physionet archive, we divide patients into two groups of normal and abnormal, based on having autonomic disorder in their cardiovascular system or not. Systolic blood pressure (SBP) and heart rate (HR) time series are evaluated for each patient. We then plot the diagram of SBP against HR for all patients in a single figure. Fuzzy c-means clustering (FCM) method is also applied to cluster data into two groups. A neural network is then implemented to classify and to distinguish the two groups. The network is trained with data of a normal patient and is tested with data of other normal and abnormal patients. Result show that selected features can clearly detect disorders in autonomic system.","PeriodicalId":406683,"journal":{"name":"2007 Computers in Cardiology","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 Computers in Cardiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIC.2007.4745529","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

An approach to classify disorders in autonomic control of cardiovascular system is proposed in this paper. The target of this study is to highlight main features of malfunctions in cardiovascular system due to autonomic disorder. Collecting the data from the physionet archive, we divide patients into two groups of normal and abnormal, based on having autonomic disorder in their cardiovascular system or not. Systolic blood pressure (SBP) and heart rate (HR) time series are evaluated for each patient. We then plot the diagram of SBP against HR for all patients in a single figure. Fuzzy c-means clustering (FCM) method is also applied to cluster data into two groups. A neural network is then implemented to classify and to distinguish the two groups. The network is trained with data of a normal patient and is tested with data of other normal and abnormal patients. Result show that selected features can clearly detect disorders in autonomic system.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
心血管系统调节机制中的紊乱分类
本文提出了一种对心血管系统自主控制疾病进行分类的方法。本研究的目的是强调自主神经障碍引起的心血管系统功能障碍的主要特征。从physionet档案中收集数据,我们根据患者心血管系统是否存在自主神经障碍,将患者分为正常和异常两组。评估每位患者的收缩压(SBP)和心率(HR)时间序列。然后,我们将所有患者的收缩压与HR绘制成一个图。采用模糊c均值聚类(FCM)方法将数据聚为两组。然后利用神经网络对两组进行分类和区分。该网络使用正常患者的数据进行训练,并使用其他正常和异常患者的数据进行测试。结果表明,所选择的特征可以清晰地检测出自主神经系统的紊乱。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Implementation and use of a patient data management system in the intensive care unit: A two-year experience Modelling effects of sotalol on T-wave morphology Vulnerability to reentry in a 3D regionally ischemic ventricular slab preparation: A simulation study Evaluation of multi-component Electrocardiogram beat detection algorithms: Implications of three different noise artifacts Dynamic 4D blood flow representation in the aorta and analysis from cine-MRI in patients
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1